找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Connectivity of Graphs; Xueliang Li,Yaping Mao Book 2016 The Author(s) 2016 Connectivity of Graphs.open problems.conjectures.r

[復(fù)制鏈接]
樓主: 空隙
21#
發(fā)表于 2025-3-25 04:31:46 | 只看該作者
22#
發(fā)表于 2025-3-25 10:05:46 | 只看該作者
Generalized Connectivity of Graphs978-3-319-33828-6Series ISSN 2191-8198 Series E-ISSN 2191-8201
23#
發(fā)表于 2025-3-25 15:34:42 | 只看該作者
24#
發(fā)表于 2025-3-25 17:06:10 | 只看該作者
25#
發(fā)表于 2025-3-26 00:04:18 | 只看該作者
26#
發(fā)表于 2025-3-26 02:52:50 | 只看該作者
27#
發(fā)表于 2025-3-26 07:27:25 | 只看該作者
28#
發(fā)表于 2025-3-26 08:44:20 | 只看該作者
29#
發(fā)表于 2025-3-26 14:03:25 | 只看該作者
Algorithm and Complexity,e have seen in the last chapter, even for some very special graphs, it is very hard to get the exact values of their generalized .-connectivity for general .. A natural question is whether there is a polynomial-time algorithm to get the parameters ..(.) and .. In this chapter, we study the complexit
30#
發(fā)表于 2025-3-26 20:28:53 | 只看該作者
Nordhaus-Gaddum-Type Results, a positive integer ., the . is to determine sharp bounds for (1) . and (2) ., as . ranges over the class ., and characterize the extremal graphs. The Nordhaus-Gaddum-type relations have received wide attention; see a survey paper [.] by Aouchiche and Hansen.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 07:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸丰县| 元江| 龙岩市| 天峻县| 郯城县| 通榆县| 连城县| 平顶山市| 深泽县| 汝阳县| 通河县| 康马县| 玛沁县| 江山市| 毕节市| 岳阳县| 武清区| 淄博市| 玉溪市| 慈溪市| 眉山市| 大庆市| 萨嘎县| 渭南市| 黄浦区| 华阴市| 西安市| 尉氏县| 广丰县| 韶关市| 伽师县| 文安县| 邯郸市| 喀喇沁旗| 利津县| 甘南县| 钟祥市| 南澳县| 黔江区| 巴马| 呈贡县|