找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: General Relativity and Cosmology; A First Encounter Ronald J. Adler Textbook 2021 The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
樓主: Bush
31#
發(fā)表于 2025-3-27 00:12:36 | 只看該作者
Affine Connections and GeodesicsIn a general Riemann space the concepts of straight lines and parallel vectors must be generalized from those familiar in Euclidian geometry. The fundamental objects needed for the generalization are affine connections. With affine connections we are naturally led to a deeper view of spacetime and the behavior of objects in it.
32#
發(fā)表于 2025-3-27 02:56:23 | 只看該作者
Tensor AnalysisThe ideas of classical vector analysis in Euclidian space generalize naturally to Riemann space. Affine connections are the key to this generalization. Moreover much of classical vector analysis becomes more clear and simple; the divergence and Laplacian are prime examples.
33#
發(fā)表于 2025-3-27 08:38:57 | 只看該作者
Classical Gravity and GeometryIn this chapter we look at the familiar classical gravitational force from a novel perspective, as a geometric effect. This perspective is motivated by the equivalence principle, the close similarity of gravitational effects to the effects of acceleration. As an application of the geometric view the gravitational redshift can be easily derived.
34#
發(fā)表于 2025-3-27 11:52:19 | 只看該作者
35#
發(fā)表于 2025-3-27 16:14:24 | 只看該作者
36#
發(fā)表于 2025-3-27 18:01:41 | 只看該作者
Entire and Meromorphic Functions,avity were first developed by nineteenth century mathematicians such as Gauss and Riemann. The most important mathematical objects in such spaces are vectors and tensors.We will treat these using both the classic index notation and a more modern abstract notation.
37#
發(fā)表于 2025-3-28 01:20:30 | 只看該作者
38#
發(fā)表于 2025-3-28 04:17:43 | 只看該作者
39#
發(fā)表于 2025-3-28 09:18:30 | 只看該作者
40#
發(fā)表于 2025-3-28 12:11:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹰潭市| 苍溪县| 甘南县| 沁阳市| 苍溪县| 武鸣县| 岳阳市| 黄石市| 昌黎县| 伊吾县| 惠水县| 永安市| 德江县| 东辽县| 察雅县| 武平县| 勐海县| 浙江省| 普安县| 盘锦市| 谷城县| 册亨县| 禄丰县| 曲靖市| 辽中县| 沁阳市| 阳谷县| 壤塘县| 廊坊市| 新巴尔虎左旗| 阳原县| 永登县| 偏关县| 庆元县| 万盛区| 萨迦县| 丰都县| 平武县| 梁河县| 沙湾县| 开鲁县|