找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Game Theory for Networks; Third International Vikram Krishnamurthy,Qing Zhao,Yonggang Wen Conference proceedings 2012 ICST Institute for C

[復(fù)制鏈接]
樓主: Destruct
41#
發(fā)表于 2025-3-28 15:10:01 | 只看該作者
42#
發(fā)表于 2025-3-28 22:03:52 | 只看該作者
43#
發(fā)表于 2025-3-29 02:01:20 | 只看該作者
44#
發(fā)表于 2025-3-29 07:02:45 | 只看該作者
Convergence Dynamics of Graphical Congestion Games,g when graphical congestion game dynamics converge to pure Nash equilibria yields important engineering insights into when spatially distributed individuals can reach a stable resource allocation. In this paper, we study the convergence dynamics of graphical congestion games where players can use mu
45#
發(fā)表于 2025-3-29 07:14:43 | 只看該作者
46#
發(fā)表于 2025-3-29 14:40:25 | 只看該作者
Efficiency Loss in a Cournot Oligopoly with Convex Market Demand,t a Cournot equilibrium to the maximum possible, for the case where the inverse market demand function is convex. We establish a lower bound on the efficiency of Cournot equilibria in terms of a scalar parameter derived from the inverse demand function. Our results provide nontrivial quantitative bo
47#
發(fā)表于 2025-3-29 17:59:16 | 只看該作者
A Game Theoretic Optimization of the Multi-channel ALOHA Protocol,-channel ALOHA protocol, each user tries to randomly access a channel using a probability vector defining the access probability to the various channels. First, we characterize the Nash Equilibrium Points (NEPs) of the network when users solve the unconstrained rate maximization. We show that in thi
48#
發(fā)表于 2025-3-29 23:43:07 | 只看該作者
Game-theoretic Robustness of Many-to-one Networks, a game-theoretic model. More specifically, we model the interactions between a network operator and an adversary as a two player zero-sum game, where the network operator chooses a spanning tree in the network, the adversary chooses an edge to be removed from the network, and the adversary’s payoff
49#
發(fā)表于 2025-3-30 03:03:38 | 只看該作者
50#
發(fā)表于 2025-3-30 06:28:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 07:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察雅县| 阿拉尔市| 黄山市| 大英县| 沙湾县| 遂溪县| 松阳县| 突泉县| 永德县| 墨脱县| 全南县| 晴隆县| 漾濞| 舒兰市| 桃江县| 文化| 枣庄市| 松阳县| 乐平市| 南部县| 甘肃省| 遂昌县| 新巴尔虎右旗| 醴陵市| 黄大仙区| 鹤峰县| 察雅县| 陆河县| 合江县| 德令哈市| 育儿| 繁峙县| 宁波市| 仪征市| 庄河市| 阿勒泰市| 故城县| 美姑县| 德庆县| 汨罗市| 连城县|