找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory; Steven H. Weintraub Textbook 20061st edition Springer-Verlag New York 2006 Galois theory.Group theory.algebra.finite field.

[復(fù)制鏈接]
查看: 42234|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:45:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Galois Theory
編輯Steven H. Weintraub
視頻videohttp://file.papertrans.cn/381/380420/380420.mp4
概述Concise and clear treatment of the subject.Stresses linear algebra approach.Author is experienced writer
叢書名稱Universitext
圖書封面Titlebook: Galois Theory;  Steven H. Weintraub Textbook 20061st edition Springer-Verlag New York 2006 Galois theory.Group theory.algebra.finite field.
描述.Classical Galois theory is a subject generally acknowledged to be one of the most central and beautiful areas in pure mathematics. This text develops the subject systematically and from the beginning, requiring of the reader only basic facts about polynomials and a good knowledge of linear algebra.? ..Key topics and features of this book:..- Approaches Galois theory from the linear algebra point of view, following Artin..- Develops the basic concepts and theorems of Galois theory, including algebraic, normal, separable, and Galois?extensions, and the Fundamental Theorem of Galois Theory..- Presents a number of applications of Galois theory, including symmetric functions, finite fields, cyclotomic fields, algebraic number fields, solvability of equations by radicals, and the impossibility of solution of the three geometric problems of Greek antiquity..- Excellent motivaton and examples throughout..The book discusses Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. Whil
出版日期Textbook 20061st edition
關(guān)鍵詞Galois theory; Group theory; algebra; finite field; number theory
版次1
doihttps://doi.org/10.1007/0-387-28917-8
isbn_ebook978-0-387-28917-5Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York 2006
The information of publication is updating

書目名稱Galois Theory影響因子(影響力)




書目名稱Galois Theory影響因子(影響力)學(xué)科排名




書目名稱Galois Theory網(wǎng)絡(luò)公開度




書目名稱Galois Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Galois Theory被引頻次




書目名稱Galois Theory被引頻次學(xué)科排名




書目名稱Galois Theory年度引用




書目名稱Galois Theory年度引用學(xué)科排名




書目名稱Galois Theory讀者反饋




書目名稱Galois Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:00:32 | 只看該作者
Pragmatism and the Value of Truth,We begin by defining the objects we will be studying.
板凳
發(fā)表于 2025-3-22 02:23:12 | 只看該作者
Regional Markets and Trade RoutesWe now apply our general theory to the case of symmetric functions. We let . be an arbitrary field and set .(.,?, .), the field of rational functions in the variables .,?, .. Then the symmetric group . acts on . by permuting .,?,
地板
發(fā)表于 2025-3-22 05:40:38 | 只看該作者
Air Charter and the Warsaw ConventionIn this section we deal with a number of questions about polynomials in .[.] related to factorization and irreducibility.
5#
發(fā)表于 2025-3-22 12:05:57 | 只看該作者
6#
發(fā)表于 2025-3-22 15:18:23 | 只看該作者
Introduction to Galois Theory,In this section we will proceed informally, neither proving our claims nor even carefully defining our terms. Nevertheless, as you will see in the course of reading this book, everything we say here is absolutely correct. We proceed in this way to show in advance what our main goals are, and hence to motivate our development.
7#
發(fā)表于 2025-3-22 17:53:56 | 只看該作者
8#
發(fā)表于 2025-3-22 23:48:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:21:46 | 只看該作者
Extensions of the field of Rational Numbers,In this section we deal with a number of questions about polynomials in .[.] related to factorization and irreducibility.
10#
發(fā)表于 2025-3-23 08:19:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
日土县| 达孜县| 龙游县| 黄龙县| 崇信县| 朝阳市| 镇赉县| 微博| 工布江达县| 确山县| 得荣县| 延安市| 江津市| 尉氏县| 彰武县| 日喀则市| 龙山县| 和田市| 长岛县| 融水| 定远县| 苍溪县| 呼和浩特市| 彭阳县| 昌邑市| 平远县| 清原| 宁河县| 洪泽县| 汶上县| 韩城市| 垣曲县| 虎林市| 武陟县| 双流县| 城市| 琼中| 平利县| 凉城县| 海盐县| 松原市|