找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Theory; Steven H. Weintraub Textbook 20061st edition Springer-Verlag New York 2006 Galois theory.Group theory.algebra.finite field.

[復制鏈接]
查看: 42239|回復: 35
樓主
發(fā)表于 2025-3-21 17:45:03 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Galois Theory
編輯Steven H. Weintraub
視頻videohttp://file.papertrans.cn/381/380420/380420.mp4
概述Concise and clear treatment of the subject.Stresses linear algebra approach.Author is experienced writer
叢書名稱Universitext
圖書封面Titlebook: Galois Theory;  Steven H. Weintraub Textbook 20061st edition Springer-Verlag New York 2006 Galois theory.Group theory.algebra.finite field.
描述.Classical Galois theory is a subject generally acknowledged to be one of the most central and beautiful areas in pure mathematics. This text develops the subject systematically and from the beginning, requiring of the reader only basic facts about polynomials and a good knowledge of linear algebra.? ..Key topics and features of this book:..- Approaches Galois theory from the linear algebra point of view, following Artin..- Develops the basic concepts and theorems of Galois theory, including algebraic, normal, separable, and Galois?extensions, and the Fundamental Theorem of Galois Theory..- Presents a number of applications of Galois theory, including symmetric functions, finite fields, cyclotomic fields, algebraic number fields, solvability of equations by radicals, and the impossibility of solution of the three geometric problems of Greek antiquity..- Excellent motivaton and examples throughout..The book discusses Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. Whil
出版日期Textbook 20061st edition
關鍵詞Galois theory; Group theory; algebra; finite field; number theory
版次1
doihttps://doi.org/10.1007/0-387-28917-8
isbn_ebook978-0-387-28917-5Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York 2006
The information of publication is updating

書目名稱Galois Theory影響因子(影響力)




書目名稱Galois Theory影響因子(影響力)學科排名




書目名稱Galois Theory網(wǎng)絡公開度




書目名稱Galois Theory網(wǎng)絡公開度學科排名




書目名稱Galois Theory被引頻次




書目名稱Galois Theory被引頻次學科排名




書目名稱Galois Theory年度引用




書目名稱Galois Theory年度引用學科排名




書目名稱Galois Theory讀者反饋




書目名稱Galois Theory讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:00:32 | 只看該作者
Pragmatism and the Value of Truth,We begin by defining the objects we will be studying.
板凳
發(fā)表于 2025-3-22 02:23:12 | 只看該作者
Regional Markets and Trade RoutesWe now apply our general theory to the case of symmetric functions. We let . be an arbitrary field and set .(.,?, .), the field of rational functions in the variables .,?, .. Then the symmetric group . acts on . by permuting .,?,
地板
發(fā)表于 2025-3-22 05:40:38 | 只看該作者
Air Charter and the Warsaw ConventionIn this section we deal with a number of questions about polynomials in .[.] related to factorization and irreducibility.
5#
發(fā)表于 2025-3-22 12:05:57 | 只看該作者
6#
發(fā)表于 2025-3-22 15:18:23 | 只看該作者
Introduction to Galois Theory,In this section we will proceed informally, neither proving our claims nor even carefully defining our terms. Nevertheless, as you will see in the course of reading this book, everything we say here is absolutely correct. We proceed in this way to show in advance what our main goals are, and hence to motivate our development.
7#
發(fā)表于 2025-3-22 17:53:56 | 只看該作者
8#
發(fā)表于 2025-3-22 23:48:39 | 只看該作者
9#
發(fā)表于 2025-3-23 01:21:46 | 只看該作者
Extensions of the field of Rational Numbers,In this section we deal with a number of questions about polynomials in .[.] related to factorization and irreducibility.
10#
發(fā)表于 2025-3-23 08:19:54 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
梁平县| 女性| 赣榆县| 诏安县| 营口市| 蛟河市| 新干县| 嘉禾县| 汝南县| 齐齐哈尔市| 应用必备| 新沂市| 通化县| 沛县| 菏泽市| 贵德县| 元阳县| 绍兴市| 陵川县| 墨竹工卡县| 高邮市| 庆云县| 礼泉县| 喀喇沁旗| 仲巴县| 林西县| 庆阳市| 梓潼县| 阳泉市| 陆川县| 涿州市| 余干县| 三河市| 鄱阳县| 宁津县| 台江县| 巴楚县| 库伦旗| 搜索| 台南市| 隆尧县|