找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants; Interactions between Frank Neumann,Sibylle Schroll Conference proceed

[復制鏈接]
樓主: emanate
41#
發(fā)表于 2025-3-28 17:26:21 | 只看該作者
Strongly Real Beauville Groups III,ny attractive geometric properties several of which are dictated by properties of the group .. A particularly interesting subclass are the ‘strongly real’ Beauville surfaces that have an analogue of complex conjugation defined on them. In this survey we discuss these objects and in particular the gr
42#
發(fā)表于 2025-3-28 20:46:58 | 只看該作者
,Arithmetic Chern–Simons Theory I,ctra of rings of integers in algebraic number fields. In the first three sections, we define classical Chern–Simons functionals on spaces of Galois representations. In the highly speculative Sect.?., we consider the far-fetched possibility of using Chern–Simons theory to construct .-functions.
43#
發(fā)表于 2025-3-28 22:59:28 | 只看該作者
44#
發(fā)表于 2025-3-29 05:15:17 | 只看該作者
,Dessins d’Enfants and Brauer Configuration Algebras,relations induced by the monodromy of the dessin d’enfant. We show that the dimension of the Brauer configuration algebra associated to a dessin d’enfant and the dimension of the centre of this algebra are invariant under the action of the absolute Galois group. We give some examples of well-known a
45#
發(fā)表于 2025-3-29 08:52:50 | 只看該作者
,On the Elliptic Kashiwara–Vergne Lie Algebra,y Alekseev, Kawazumi, Kuno and Naef arising from the study of graded formality isomorphisms associated to topological fundamental groups of surfaces, and the Lie algebra . defined using mould theoretic techniques arising from multiple zeta theory by Raphael and Schneps, and show that they coincide.
46#
發(fā)表于 2025-3-29 14:12:28 | 只看該作者
47#
發(fā)表于 2025-3-29 17:11:11 | 只看該作者
48#
發(fā)表于 2025-3-29 23:00:23 | 只看該作者
49#
發(fā)表于 2025-3-30 03:45:27 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 22:02
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
台湾省| 平定县| 滁州市| 涡阳县| 庆元县| 全南县| 邢台市| 龙口市| 乡城县| 海兴县| 陈巴尔虎旗| 太和县| 横山县| 彰武县| 东兴市| 定南县| 岳池县| 扶余县| 安阳县| 清镇市| 廊坊市| 大兴区| 西和县| 潼关县| 沽源县| 鄂尔多斯市| 阿拉善右旗| 永善县| 同德县| 离岛区| 巴楚县| 弥勒县| 石台县| 阳泉市| 梁河县| 马边| 尤溪县| 宜都市| 江陵县| 西乌珠穆沁旗| 竹山县|