找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants; Interactions between Frank Neumann,Sibylle Schroll Conference proceed

[復(fù)制鏈接]
樓主: emanate
21#
發(fā)表于 2025-3-25 06:09:29 | 只看該作者
Introduction: Climate, Cocoa and Trees,ctra of rings of integers in algebraic number fields. In the first three sections, we define classical Chern–Simons functionals on spaces of Galois representations. In the highly speculative Sect.?., we consider the far-fetched possibility of using Chern–Simons theory to construct .-functions.
22#
發(fā)表于 2025-3-25 10:01:19 | 只看該作者
G. Gururaja Rao,Jagdish Chander Dagary Alekseev, Kawazumi, Kuno and Naef arising from the study of graded formality isomorphisms associated to topological fundamental groups of surfaces, and the Lie algebra . defined using mould theoretic techniques arising from multiple zeta theory by Raphael and Schneps, and show that they coincide.
23#
發(fā)表于 2025-3-25 12:47:23 | 只看該作者
24#
發(fā)表于 2025-3-25 18:11:25 | 只看該作者
25#
發(fā)表于 2025-3-25 23:58:55 | 只看該作者
,On the Elliptic Kashiwara–Vergne Lie Algebra,y Alekseev, Kawazumi, Kuno and Naef arising from the study of graded formality isomorphisms associated to topological fundamental groups of surfaces, and the Lie algebra . defined using mould theoretic techniques arising from multiple zeta theory by Raphael and Schneps, and show that they coincide.
26#
發(fā)表于 2025-3-26 02:47:26 | 只看該作者
Conference proceedings 2020 theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike. ? .
27#
發(fā)表于 2025-3-26 04:35:36 | 只看該作者
2194-1009 n with Galois covers, Grothendieck-Teichmüller Theory and De.This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on ‘Galois Covers, Grothendieck-Teichmüller Theory and Dessinsd‘Enfants‘, which took place at the Uni
28#
發(fā)表于 2025-3-26 10:36:56 | 只看該作者
29#
發(fā)表于 2025-3-26 14:00:12 | 只看該作者
Domain B: Knowledge and Cultureeal’ Beauville surfaces that have an analogue of complex conjugation defined on them. In this survey we discuss these objects and in particular the groups that may be used to define them. . we discuss several open problems, questions and conjectures and in places make some progress made on addressing these.
30#
發(fā)表于 2025-3-26 18:20:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威宁| 甘南县| 泌阳县| 兴隆县| 龙胜| 上栗县| 博爱县| 大石桥市| 北宁市| 沁源县| 临城县| 昂仁县| 贵阳市| 扶沟县| 紫金县| 瑞金市| 玛纳斯县| 浦县| 平阳县| 云南省| 岑溪市| 玛多县| 闽清县| 呈贡县| 阿鲁科尔沁旗| 奎屯市| 文登市| 永清县| 邻水| 泰来县| 遂川县| 万源市| 勐海县| 陵水| 特克斯县| 林口县| 清新县| 太康县| 信宜市| 盐亭县| 高陵县|