找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Field Arithmetic; Michael D. Fried,Moshe Jarden Book 2023Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
查看: 20199|回復(fù): 62
樓主
發(fā)表于 2025-3-21 19:18:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Field Arithmetic
編輯Michael D. Fried,Moshe Jarden
視頻videohttp://file.papertrans.cn/343/342578/342578.mp4
概述Provides a self-contained account of the study of Diophantine fields through their absolute Galois groups.Covers the prerequisites on infinite Galois theory, profinite groups, algebraic function field
叢書(shū)名稱(chēng)Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書(shū)封面Titlebook: Field Arithmetic;  Michael D. Fried,Moshe Jarden Book 2023Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive l
描述.This book uses algebraic tools to study the elementary properties of classes of fields and related algorithmic problems. The first part covers foundational material on infinite Galois theory, profinite groups, algebraic function fields in one variable and plane curves. It provides complete and elementary proofs of the Chebotarev density theorem and the Riemann hypothesis for function fields, together with material on ultraproducts, decision procedures, the elementary theory of algebraically closed fields, undecidability and nonstandard model theory, including a nonstandard proof of Hilbert‘s irreducibility theorem. The focus then turns to the study of pseudo algebraically closed (PAC) fields, related structures and associated decidability and undecidability results. PAC fields (fields K with the property that every absolutely irreducible variety over K has a rational point) first arose in the elementary theory of finite fields and have deep connections with number theory..Thisfourth edition substantially extends, updates and clarifies the previous editions of this celebrated book, and includes a new chapter on Hilbertian subfields of Galois extensions. Almost every chapter conclud
出版日期Book 2023Latest edition
關(guān)鍵詞Absolute Galois Groups; Algebra; Arithmetic; Counting; Finite Fields; Galois Stratification; Hilbertian Fi
版次4
doihttps://doi.org/10.1007/978-3-031-28020-7
isbn_softcover978-3-031-28022-1
isbn_ebook978-3-031-28020-7Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Field Arithmetic影響因子(影響力)




書(shū)目名稱(chēng)Field Arithmetic影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Field Arithmetic網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Field Arithmetic網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Field Arithmetic被引頻次




書(shū)目名稱(chēng)Field Arithmetic被引頻次學(xué)科排名




書(shū)目名稱(chēng)Field Arithmetic年度引用




書(shū)目名稱(chēng)Field Arithmetic年度引用學(xué)科排名




書(shū)目名稱(chēng)Field Arithmetic讀者反饋




書(shū)目名稱(chēng)Field Arithmetic讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:29 | 只看該作者
第142578主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:06:20 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:56:29 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:12:18 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:02:47 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:11:24 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:22:06 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:23:50 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:17:12 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 18:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄河市| 丰县| 夹江县| 德惠市| 新竹市| 自治县| 平安县| 遵义市| 宝鸡市| 马龙县| 德惠市| 安康市| 冀州市| 来宾市| 原阳县| 浪卡子县| 建水县| 平和县| 林口县| 方正县| 雅安市| 洛南县| 旅游| 铅山县| 奎屯市| 海宁市| 鄂尔多斯市| 敦煌市| 汪清县| 旅游| 伽师县| 云霄县| 建昌县| 万源市| 元谋县| 德格县| 永善县| 台湾省| 高碑店市| 武城县| 阳信县|