找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Field Arithmetic; Michael D. Fried,Moshe Jarden Book 2023Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive l

[復制鏈接]
查看: 20205|回復: 62
樓主
發(fā)表于 2025-3-21 19:18:36 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Field Arithmetic
編輯Michael D. Fried,Moshe Jarden
視頻videohttp://file.papertrans.cn/343/342578/342578.mp4
概述Provides a self-contained account of the study of Diophantine fields through their absolute Galois groups.Covers the prerequisites on infinite Galois theory, profinite groups, algebraic function field
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemati
圖書封面Titlebook: Field Arithmetic;  Michael D. Fried,Moshe Jarden Book 2023Latest edition The Editor(s) (if applicable) and The Author(s), under exclusive l
描述.This book uses algebraic tools to study the elementary properties of classes of fields and related algorithmic problems. The first part covers foundational material on infinite Galois theory, profinite groups, algebraic function fields in one variable and plane curves. It provides complete and elementary proofs of the Chebotarev density theorem and the Riemann hypothesis for function fields, together with material on ultraproducts, decision procedures, the elementary theory of algebraically closed fields, undecidability and nonstandard model theory, including a nonstandard proof of Hilbert‘s irreducibility theorem. The focus then turns to the study of pseudo algebraically closed (PAC) fields, related structures and associated decidability and undecidability results. PAC fields (fields K with the property that every absolutely irreducible variety over K has a rational point) first arose in the elementary theory of finite fields and have deep connections with number theory..Thisfourth edition substantially extends, updates and clarifies the previous editions of this celebrated book, and includes a new chapter on Hilbertian subfields of Galois extensions. Almost every chapter conclud
出版日期Book 2023Latest edition
關鍵詞Absolute Galois Groups; Algebra; Arithmetic; Counting; Finite Fields; Galois Stratification; Hilbertian Fi
版次4
doihttps://doi.org/10.1007/978-3-031-28020-7
isbn_softcover978-3-031-28022-1
isbn_ebook978-3-031-28020-7Series ISSN 0071-1136 Series E-ISSN 2197-5655
issn_series 0071-1136
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Field Arithmetic影響因子(影響力)




書目名稱Field Arithmetic影響因子(影響力)學科排名




書目名稱Field Arithmetic網(wǎng)絡公開度




書目名稱Field Arithmetic網(wǎng)絡公開度學科排名




書目名稱Field Arithmetic被引頻次




書目名稱Field Arithmetic被引頻次學科排名




書目名稱Field Arithmetic年度引用




書目名稱Field Arithmetic年度引用學科排名




書目名稱Field Arithmetic讀者反饋




書目名稱Field Arithmetic讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:28:29 | 只看該作者
第142578主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:06:20 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:56:29 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:12:18 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:02:47 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:11:24 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:22:06 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:23:50 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:17:12 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 01:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
柞水县| 彭山县| 灵宝市| 姚安县| 雷波县| 巫溪县| 松原市| 班戈县| 清水河县| 湘潭市| 巴马| 竹溪县| 抚顺市| 冕宁县| 金川县| 南京市| 台中市| 绥棱县| 汉寿县| 伽师县| 阜城县| 信阳市| 益阳市| 漯河市| 五常市| 巢湖市| 新乐市| 抚顺市| 深水埗区| 原阳县| 犍为县| 类乌齐县| 河北省| 西乌珠穆沁旗| 自治县| 岫岩| 丰宁| 甘肃省| 淮滨县| 太原市| 宁河县|