找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Galois Theory; A Constructive Appro Marc Nieper-Wi?kirchen Textbook 2024 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Exaltation
21#
發(fā)表于 2025-3-25 03:39:26 | 只看該作者
22#
發(fā)表于 2025-3-25 07:49:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:51 | 只看該作者
24#
發(fā)表于 2025-3-25 18:23:57 | 只看該作者
Methoden der Journalismusforschungizations of integers..In this context, we call a polynomial . if it does not allow such a factorization. In other words, the irreducible polynomials play the role of prime numbers in the ring of polynomials. Every linear polynomial . must be irreducible, because already for reasons of degree it cann
25#
發(fā)表于 2025-3-25 23:07:21 | 只看該作者
26#
發(fā)表于 2025-3-26 02:06:03 | 只看該作者
Theorie der linearen Integralgleichungen,ns out that the theory becomes much more powerful when we also consider extensions of the rational numbers as the coefficient domain. We call this view the ., while we refer to the rational number case as the ...For example, . is the minimal polynomial of a fourth root . of 2 over the rational numbe
27#
發(fā)表于 2025-3-26 05:26:03 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:31 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:40 | 只看該作者
https://doi.org/10.1007/978-3-662-66643-2Galois theory; Resolvability of polynomial equations; Constructability of regular n-corners; Impossibil
30#
發(fā)表于 2025-3-26 18:51:58 | 只看該作者
Marc Nieper-Wi?kirchenSuitable for first-year students in Bachelor‘s and teacher training programmes.Consistently constructive approach facilitates understanding.Core statements and essential arguments are summarised
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扬中市| 蕉岭县| 华安县| 于田县| 南漳县| 尤溪县| 吉林省| 龙海市| 额尔古纳市| 庆阳市| 平遥县| 高安市| 中卫市| 金湖县| 武城县| 通化县| 顺昌县| 綦江县| 清苑县| 武义县| 康保县| 循化| 张北县| 铜陵市| 锡林郭勒盟| 崇义县| 贵州省| 宁乡县| 云梦县| 高碑店市| 鄂托克旗| 延边| 广饶县| 无棣县| 会理县| 化州市| 鹿邑县| 巴彦县| 朔州市| 措勤县| 封丘县|