找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Galois Theory; A Constructive Appro Marc Nieper-Wi?kirchen Textbook 2024 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
樓主: Exaltation
11#
發(fā)表于 2025-3-23 12:13:43 | 只看該作者
Methoden der Mathematischen Physik ., and we provide a complete procedure in this chapter..By being able to assign a group to each (the roots of each) polynomial, we can in turn draw conclusions about the polynomial and its roots from the group structure. Therefore, in this chapter, we look at some very general statements about grou
12#
發(fā)表于 2025-3-23 14:32:57 | 只看該作者
Theorie der linearen Integralgleichungen,bsolute case over the rational numbers: First, we look at the relative case over suitable extensions of the original coefficient domain. Then we successively reduce the number field, so that the Galois group successively increases until we find the Galois group over the rational numbers in the limit
13#
發(fā)表于 2025-3-23 18:26:57 | 只看該作者
2731-3824 ght at the beginning of mathematics studies and is equally suitable for first-year students at the Bachelor‘s level and for teachers...The central statements are already summarised and concisely presented978-3-662-66642-5978-3-662-66643-2Series ISSN 2731-3824 Series E-ISSN 2731-3832
14#
發(fā)表于 2025-3-24 01:55:06 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:56:56 | 只看該作者
17#
發(fā)表于 2025-3-24 10:55:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:25 | 只看該作者
On the Solvability of Polynomial Equations,bsolute case over the rational numbers: First, we look at the relative case over suitable extensions of the original coefficient domain. Then we successively reduce the number field, so that the Galois group successively increases until we find the Galois group over the rational numbers in the limit
19#
發(fā)表于 2025-3-24 22:37:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:08 | 只看該作者
978-3-662-66642-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 23:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
甘南县| 来安县| 哈尔滨市| 荥经县| 中西区| 肃北| 东明县| 江北区| 吴川市| 宁陵县| 永登县| 都兰县| 娱乐| 枞阳县| 铜山县| 重庆市| 辽阳县| 兰坪| 东明县| 交口县| 彰化市| 桃园县| 丰县| 苍南县| 广丰县| 岳池县| 临高县| 浙江省| 会昌县| 永新县| 施甸县| 宜丰县| 梁山县| 乐山市| 洞头县| 道孚县| 陇川县| 原平市| 通山县| 和静县| 大丰市|