找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts EuroComb 2021; European Conference Jaroslav Ne?et?il,Guillem Perarnau,Oriol Serra Conference proceedings 2021 The Edito

[復(fù)制鏈接]
樓主: 不友善
21#
發(fā)表于 2025-3-25 03:38:37 | 只看該作者
22#
發(fā)表于 2025-3-25 07:31:39 | 只看該作者
https://doi.org/10.1007/978-3-658-05438-0.. The key to the result is an inductive construction of a family of 13-crossing-critical graphs with many vertices of arbitrarily high degrees. While the inductive part of the construction is rather easy, it all relies on the fact that a certain 17-vertex base graph has the crossing number 13, whic
23#
發(fā)表于 2025-3-25 12:03:48 | 只看該作者
https://doi.org/10.1007/978-3-8349-6187-7lish a novel uniform infinite planar graph (UIPG) as quenched limit in the local topology as . tends to infinity. We also establish such limits for random 2-connected planar graphs and maps as their number of edges tends to infinity. Our approach encompasses a new probabilistic view on the Tutte dec
24#
發(fā)表于 2025-3-25 17:32:44 | 只看該作者
25#
發(fā)表于 2025-3-25 22:03:10 | 只看該作者
26#
發(fā)表于 2025-3-26 02:21:14 | 只看該作者
27#
發(fā)表于 2025-3-26 04:50:55 | 只看該作者
28#
發(fā)表于 2025-3-26 10:53:18 | 只看該作者
29#
發(fā)表于 2025-3-26 13:07:18 | 只看該作者
,Immergrüner Wandel – Ein Ausblick, that .. Recently, by relating this problem to a topological game, the authors, together with Bowler and Pitz, gave the current best known bound that .. Combining some of these ideas with some techniques introduced by Schr?der we improve this bound and show that ..
30#
發(fā)表于 2025-3-26 19:49:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商洛市| 鄂温| 宜昌市| 揭东县| 康定县| 贵南县| 阜平县| 碌曲县| 泽普县| 泸州市| 柘城县| 龙泉市| 云浮市| 堆龙德庆县| 肃宁县| 萝北县| 滕州市| 吉木乃县| 五常市| 儋州市| 延吉市| 高阳县| 全州县| 武安市| 潞西市| 新建县| 塔城市| 龙山县| 北川| 新野县| 东乌珠穆沁旗| 揭东县| 得荣县| 城口县| 河北省| 浏阳市| 深泽县| 岳西县| 安顺市| 云龙县| 永年县|