找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extended Abstracts EuroComb 2021; European Conference Jaroslav Ne?et?il,Guillem Perarnau,Oriol Serra Conference proceedings 2021 The Edito

[復(fù)制鏈接]
樓主: 不友善
11#
發(fā)表于 2025-3-23 10:01:26 | 只看該作者
12#
發(fā)表于 2025-3-23 16:14:56 | 只看該作者
Size of Local Finite Field Kakeya Sets,Let?. be a finite field consisting of?. elements and let?. be an integer. In this paper, we study the size of local Kakeya sets with respect to subsets of?. and obtain upper and lower bounds for the minimum size of a (local) Kakeya set with respect to an arbitrary set?..
13#
發(fā)表于 2025-3-23 21:02:47 | 只看該作者
14#
發(fā)表于 2025-3-24 00:56:59 | 只看該作者
15#
發(fā)表于 2025-3-24 04:19:48 | 只看該作者
,A Short Proof of Euler–Poincaré Formula,“.”, the famous Euler’s polyhedral formula, has a natural generalization to convex polytopes in every finite dimension, also known as the Euler–Poincaré Formula. We provide another short inductive combinatorial proof of the general formula. Our proof is self-contained and it does not use shellability of polytopes.
16#
發(fā)表于 2025-3-24 08:07:12 | 只看該作者
17#
發(fā)表于 2025-3-24 12:50:05 | 只看該作者
18#
發(fā)表于 2025-3-24 17:29:29 | 只看該作者
19#
發(fā)表于 2025-3-24 19:34:07 | 只看該作者
20#
發(fā)表于 2025-3-25 01:37:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 02:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐业县| 平潭县| 古交市| 罗甸县| 洛宁县| 永新县| 罗平县| 祁连县| 柳林县| 阳西县| 海宁市| 凤山县| 安阳县| 五大连池市| 平泉县| 双桥区| 玉山县| 花莲县| 百色市| 丰镇市| 云林县| 磐安县| 贺州市| 陇西县| 开封县| 山阳县| 盘锦市| 云阳县| 正镶白旗| 福海县| 楚雄市| 呼和浩特市| 册亨县| 商水县| 婺源县| 桐柏县| 隆昌县| 仲巴县| 河津市| 嫩江县| 安陆市|