找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems; Tatsien Li,Ke Wang,Qilong Gu Book 2016 The Author(s) 2

[復(fù)制鏈接]
樓主: advocate
11#
發(fā)表于 2025-3-23 11:10:43 | 只看該作者
Semi-global Piecewise Classical Solutions on a Tree-Like Network,In this chapter, semi-global classical solutions on a single interval will be generalized to semi-global piecewise classical solutions on a tree-like network.
12#
發(fā)表于 2025-3-23 14:28:39 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D First Order Quasilinear Hyperbolic Systems,A complete theory on the local exact boundary controllability for 1-D quasilinear hyperbolic systems has been established in [11, 12, 16–18].
13#
發(fā)表于 2025-3-23 18:38:19 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations on a Planar TreeIn this Chapter, we will generalize the exact boundary controllability of nodal profile for 1-D quasilinear wave equations in a single string, discussed in Chap.?., to that on a planar tree-like network of strings with general topology (see Wang and Gu [22]. For the corresponding result on the exact boundary controllability, cf. Gu and Li [6]).
14#
發(fā)表于 2025-3-23 22:11:39 | 只看該作者
Hui Wang,David Bell,Fionn Murtaghspatial interval, discussed in Chap.?., to that on a tree-like network. A general framework can be established for general 1-D first order quasilinear hyperbolic systems with general nonlinear boundary conditions and general nonlinear interface conditions, provided that there are full of boundary co
15#
發(fā)表于 2025-3-24 04:32:13 | 只看該作者
Latent Semantic Feature Extraction,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
16#
發(fā)表于 2025-3-24 08:01:21 | 只看該作者
Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems978-981-10-2842-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
17#
發(fā)表于 2025-3-24 13:06:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:42:16 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
19#
發(fā)表于 2025-3-24 20:53:43 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:07 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙湾县| 墨脱县| 湖南省| 通海县| 静宁县| 德阳市| 通江县| 五河县| 佛教| 灵台县| 手游| 康平县| 丰都县| 斗六市| 山东省| 丽江市| 无锡市| 贵州省| 孝昌县| 神农架林区| 蓬安县| 康保县| 平遥县| 繁峙县| 高雄市| 天水市| 安庆市| 江川县| 石门县| 兴安盟| 石城县| 莱州市| 新巴尔虎左旗| 云霄县| 班戈县| 抚顺市| 淄博市| 乌鲁木齐市| 邹平县| 平陆县| 康定县|