找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems; Tatsien Li,Ke Wang,Qilong Gu Book 2016 The Author(s) 2

[復(fù)制鏈接]
查看: 15023|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:54:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems
編輯Tatsien Li,Ke Wang,Qilong Gu
視頻videohttp://file.papertrans.cn/319/318147/318147.mp4
概述Introduces new and useful controllability to readers.Establishes a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyperbolic systems.Illerstrate the c
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems;  Tatsien Li,Ke Wang,Qilong Gu Book 2016 The Author(s) 2
描述.This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications.? This kind of controllability is useful in practice as it?does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien‘s monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability ofnodal profile for 1-D quasilinear hyperbolic systems..
出版日期Book 2016
關(guān)鍵詞Controllability; Exact Boundary Controllability; Quasilinear; Tree-like Network; Nodal Prole; Quasilinear
版次1
doihttps://doi.org/10.1007/978-981-10-2842-7
isbn_softcover978-981-10-2841-0
isbn_ebook978-981-10-2842-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2016
The information of publication is updating

書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems影響因子(影響力)




書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems影響因子(影響力)學(xué)科排名




書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems網(wǎng)絡(luò)公開度




書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems被引頻次




書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems被引頻次學(xué)科排名




書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems年度引用




書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems年度引用學(xué)科排名




書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems讀者反饋




書目名稱Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:01:42 | 只看該作者
Tatsien Li,Ke Wang,Qilong GuIntroduces new and useful controllability to readers.Establishes a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyperbolic systems.Illerstrate the c
板凳
發(fā)表于 2025-3-22 02:23:56 | 只看該作者
地板
發(fā)表于 2025-3-22 05:52:32 | 只看該作者
5#
發(fā)表于 2025-3-22 10:57:15 | 只看該作者
Caiyun Ma,Shoushui Wei,Chengyu LiuConsider the following 1-D quasilinear wave equation.
6#
發(fā)表于 2025-3-22 14:42:46 | 只看該作者
Norbert Jankowski,Krzysztof GrabczewskiIn this chapter, semi-global classical solutions on a single interval will be generalized to semi-global piecewise classical solutions on a tree-like network.
7#
發(fā)表于 2025-3-22 19:06:05 | 只看該作者
Aswini Kumar Samantaray,Amol D. RahulkarA complete theory on the local exact boundary controllability for 1-D quasilinear hyperbolic systems has been established in [11, 12, 16–18].
8#
發(fā)表于 2025-3-22 21:59:19 | 只看該作者
9#
發(fā)表于 2025-3-23 02:38:43 | 只看該作者
First Order Quasilinear Hyperbolic Systems,We consider the following 1-D first order quasilinear system.
10#
發(fā)表于 2025-3-23 06:58:28 | 只看該作者
Quasilinear Wave Equations,Consider the following 1-D quasilinear wave equation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江山市| 蒙城县| 石渠县| 宜宾市| 麻栗坡县| 丰都县| 长白| 大同县| 灵武市| 青冈县| 县级市| 沙雅县| 邵武市| 陆河县| 长子县| 宣城市| 靖宇县| 诸城市| 泾阳县| 龙海市| 醴陵市| 皋兰县| 新乡市| 新津县| 梧州市| 浑源县| 凤山市| 木里| 融水| 镇原县| 大庆市| 宜阳县| 马尔康县| 屯昌县| 称多县| 凯里市| 麟游县| 河北省| 台东市| 溆浦县| 惠东县|