找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems; Tatsien Li,Ke Wang,Qilong Gu Book 2016 The Author(s) 2

[復制鏈接]
樓主: advocate
11#
發(fā)表于 2025-3-23 11:10:43 | 只看該作者
Semi-global Piecewise Classical Solutions on a Tree-Like Network,In this chapter, semi-global classical solutions on a single interval will be generalized to semi-global piecewise classical solutions on a tree-like network.
12#
發(fā)表于 2025-3-23 14:28:39 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D First Order Quasilinear Hyperbolic Systems,A complete theory on the local exact boundary controllability for 1-D quasilinear hyperbolic systems has been established in [11, 12, 16–18].
13#
發(fā)表于 2025-3-23 18:38:19 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations on a Planar TreeIn this Chapter, we will generalize the exact boundary controllability of nodal profile for 1-D quasilinear wave equations in a single string, discussed in Chap.?., to that on a planar tree-like network of strings with general topology (see Wang and Gu [22]. For the corresponding result on the exact boundary controllability, cf. Gu and Li [6]).
14#
發(fā)表于 2025-3-23 22:11:39 | 只看該作者
Hui Wang,David Bell,Fionn Murtaghspatial interval, discussed in Chap.?., to that on a tree-like network. A general framework can be established for general 1-D first order quasilinear hyperbolic systems with general nonlinear boundary conditions and general nonlinear interface conditions, provided that there are full of boundary co
15#
發(fā)表于 2025-3-24 04:32:13 | 只看該作者
Latent Semantic Feature Extraction,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
16#
發(fā)表于 2025-3-24 08:01:21 | 只看該作者
Exact Boundary Controllability of Nodal Profile for Quasilinear Hyperbolic Systems978-981-10-2842-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
17#
發(fā)表于 2025-3-24 13:06:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:42:16 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
19#
發(fā)表于 2025-3-24 20:53:43 | 只看該作者
20#
發(fā)表于 2025-3-25 02:47:07 | 只看該作者
Exact Boundary Controllability of Nodal Profile for 1-D Quasilinear Wave Equations,e (see [12, 19]). In this Chapter, we will show that, based on the results given in Chap.?., this constructive method can be elegantly modified to get the local exact boundary controllability of nodal profile for 1-D quasilinear wave equations (see Wang [21]).
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-16 22:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
新建县| 措勤县| 许昌县| 涞水县| 神木县| 栾川县| 安丘市| 沂源县| 安新县| 英超| 德保县| 辽宁省| 太白县| 湖州市| 肥乡县| 通江县| 治多县| 武山县| 湖北省| 太白县| 中卫市| 沈阳市| 丹阳市| 桂阳县| 凌云县| 西安市| 青州市| 阜南县| 平江县| 陆河县| 曲靖市| 体育| 新民市| 高邮市| 驻马店市| 沅江市| 云龙县| 平乐县| 谷城县| 都昌县| 平邑县|