找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Design Theory; Masanori Sawa,Masatake Hirao,Sanpei Kageyama Book 2019 The Author(s), under exclusive license to Springer Nature

[復(fù)制鏈接]
樓主: 惡夢(mèng)
11#
發(fā)表于 2025-3-23 11:26:20 | 只看該作者
SpringerBriefs in CybersecurityThe present chapter provides a brief summary of basic ideas and facts concerning ., which are closely related to the theories of cubature formula being a certain class of integration formulas in numerical analysis, as well as of Euclidean design which is a special point configuration in the Euclidean space.
12#
發(fā)表于 2025-3-23 16:54:01 | 只看該作者
Property, Corporate, and Government Crime,A . reveals a numerical integration rule that approximates a multiple integral by a positive linear combination of function values at finitely many specified points on the integral domain. A central objective is to investigate the existence as well as the construction of cubature formulas in high dimensions.
13#
發(fā)表于 2025-3-23 19:58:20 | 只看該作者
14#
發(fā)表于 2025-3-24 02:11:10 | 只看該作者
Cubature Formula,A . reveals a numerical integration rule that approximates a multiple integral by a positive linear combination of function values at finitely many specified points on the integral domain. A central objective is to investigate the existence as well as the construction of cubature formulas in high dimensions.
15#
發(fā)表于 2025-3-24 06:12:01 | 只看該作者
estimated” with some statistical criterion. . is a popular criterion that seeks for designs minimizing the determinant of the covariance matrix. Here and hereafter, we are mainly concerned with .-optimal designs on the unit ball.
16#
發(fā)表于 2025-3-24 07:06:27 | 只看該作者
Kyle J. D. Mulrooney,Katinka van de Venent equations . for all monomials of degree up?to 2.. But a serious concern for this approach is that the number of equations rapidly grows with the number of unknown parameters . even in the quadratic or cubic regression?(.) in Sect.?3.1.
17#
發(fā)表于 2025-3-24 10:58:48 | 只看該作者
18#
發(fā)表于 2025-3-24 15:45:44 | 只看該作者
19#
發(fā)表于 2025-3-24 20:02:30 | 只看該作者
estimated” with some statistical criterion. . is a popular criterion that seeks for designs minimizing the determinant of the covariance matrix. Here and hereafter, we are mainly concerned with .-optimal designs on the unit ball.
20#
發(fā)表于 2025-3-24 23:25:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 17:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长沙县| 上饶县| 涪陵区| 宁夏| 镇雄县| 遂宁市| 武夷山市| 陇川县| 汉川市| 壶关县| 南汇区| 土默特左旗| 汝城县| 乐陵市| 琼结县| 镇平县| 达拉特旗| 江都市| 沙河市| 成都市| 苏州市| 沐川县| 五寨县| 苏尼特左旗| 黑河市| 昭觉县| 奉化市| 基隆市| 龙口市| 姜堰市| 石阡县| 西华县| 黄平县| 屏山县| 民乐县| 千阳县| 女性| 保定市| 嘉荫县| 武夷山市| 清新县|