找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimating Ore Grade Using Evolutionary Machine Learning Models; Mohammad Ehteram,Zohreh Sheikh Khozani,Maliheh Abb Book 2023 The Editor(s

[復(fù)制鏈接]
樓主: EXTRA
31#
發(fā)表于 2025-3-26 23:06:30 | 只看該作者
32#
發(fā)表于 2025-3-27 04:23:38 | 只看該作者
Neeta Sharma,Swati Sharma,Basant Prabhages and disadvantages of different models are described. This chapter presents the solutions for improving the accuracy of soft computing models. This chapter explains the details for quantifying uncertainty modeling. The chapter indicated that the artificial neural network models (ANN) had high cap
33#
發(fā)表于 2025-3-27 08:57:26 | 只看該作者
34#
發(fā)表于 2025-3-27 10:44:41 | 只看該作者
35#
發(fā)表于 2025-3-27 16:54:59 | 只看該作者
36#
發(fā)表于 2025-3-27 18:08:24 | 只看該作者
Estimating Ore Grade Using Evolutionary Machine Learning Models
37#
發(fā)表于 2025-3-27 22:37:55 | 只看該作者
Estimating Ore Grade Using Evolutionary Machine Learning Models978-981-19-8106-7
38#
發(fā)表于 2025-3-28 03:42:46 | 只看該作者
The Necessity of Grade Estimation,elers need robust models for estimating ore grade since it is a nonlinear and complex process. We investigate the potential of different models for estimating ore grade. We explain the advantages and disadvantages of models. The purpose of this chapter is to assist modelers in choosing the best mode
39#
發(fā)表于 2025-3-28 07:46:15 | 只看該作者
A Review of Modeling Approaches,rent models. The chapter also discusses the benefits of different soft computing models. This chapter aims to assess the potential of artificial neural networks for estimating ore grades. In addition, this chapter examines the research gaps for estimating ore grade in previous studies. Additionally,
40#
發(fā)表于 2025-3-28 13:29:52 | 只看該作者
Structure of Different Kinds of ANN Models, advanced operators. The advantages of each ANN model are discussed in this chapter. There are different layers in ANN models. Layers perform different tasks. The performance of ANN models depends on the parameters of ANNs. Different ANN models are compared for estimating ore grade in this chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广昌县| 丘北县| 乌兰浩特市| 宁陵县| 年辖:市辖区| 襄垣县| 康平县| 太保市| 阿荣旗| 韩城市| 胶南市| 承德市| 九龙坡区| 宿州市| 龙胜| 秭归县| 涿鹿县| 天镇县| 湛江市| 河北区| 锦州市| 阳山县| 定西市| 肇东市| 雅安市| 股票| 宝山区| 临洮县| 台山市| 新乡市| 梨树县| 南昌县| 铜川市| 屯留县| 高陵县| 邵阳市| 常德市| 丹东市| 银川市| 柯坪县| 乳源|