找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimating Ore Grade Using Evolutionary Machine Learning Models; Mohammad Ehteram,Zohreh Sheikh Khozani,Maliheh Abb Book 2023 The Editor(s

[復(fù)制鏈接]
樓主: EXTRA
11#
發(fā)表于 2025-3-23 12:17:57 | 只看該作者
12#
發(fā)表于 2025-3-23 16:00:56 | 只看該作者
Faheema Khan,Khalid Rehman Hakeemt tasks. The performance of ANN models depends on the parameters of ANNs. Different ANN models are compared for estimating ore grade in this chapter. A modeler can choose the best ANN model by understanding its different features.
13#
發(fā)表于 2025-3-23 22:02:14 | 只看該作者
14#
發(fā)表于 2025-3-23 23:29:26 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:54 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:39 | 只看該作者
https://doi.org/10.1007/978-94-011-1490-5 this chapter suggests solutions to improve the accuracy of models for estimating ore grades. This chapter examines the drawbacks of different models. The chapter indicated that ore grade could be accurately estimated using soft computing models.
17#
發(fā)表于 2025-3-24 12:45:53 | 只看該作者
Abazar Rajabi,Eric Schmieder Oberxplains the structure of different optimization algorithms for solving optimization problems. The advantages and disadvantages of different optimization algorithms are explained in this chapter. The optimization algorithms use advanced operators to adjust the ANN parameters.
18#
發(fā)表于 2025-3-24 17:31:41 | 只看該作者
Annie Ruttledge,Bhagirath S. Chauhans 8.12, 8.25, 8.57, and 8.98 for the RBFNN-SSO, RBFNN-SCA, RBFNN-FFA, and RBFNN. At the testing level, the IMM decreased the MAE of the RBFNN-SSO, RBFNN-SCA, RBFNN-FFA, and RFBNN by 0.9, 8.5, 17, and 20%, respectively. The results indicated that the IMM model was reliable for estimating ore grade.
19#
發(fā)表于 2025-3-24 21:49:51 | 只看該作者
Crop Rotation Defeats Pests and Weeds,FA, GMDH-PSO, GMDH-GA, and GMDH were 4.55, 5.12, 5.54, 5.89, and 5.91. At the testing level, the GMDH-SSA decreased the MAE of the GMDH-SCA, GMDH-FFA, GMDH-PSO, GMDH-GA, and GMDH by 4.7, 14, 16, and 17%, respectively. The optimized GMDH models had a high potential for estimating iron ore grade.
20#
發(fā)表于 2025-3-25 01:03:08 | 只看該作者
Neeta Sharma,Swati Sharma,Basant Prabhaabilities for estimating ore grades. This chapter indicated that the model parameters and input parameters are the uncertainty resources in the modeling process. Also, the optimization algorithms improved the accuracy of ANN models for estimating ore grade.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浦北县| 洮南市| 兰溪市| 柯坪县| 铜川市| 衡山县| 平南县| 屏东市| 乌拉特后旗| 贵定县| 侯马市| 枣强县| 桃源县| 隆化县| 耒阳市| 灵寿县| 秦皇岛市| 香港 | 丹阳市| 呼图壁县| 吉隆县| 东方市| 太谷县| 奉贤区| 天祝| 大港区| 邹城市| 蒲城县| 台湾省| 锡林郭勒盟| 惠来县| 玉屏| 阜新| 北票市| 嫩江县| 徐州市| 镇赉县| 静宁县| 贵阳市| 天柱县| 新乡县|