找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Equilibrium Capillary Surfaces; Robert Finn Book 1986 Springer-Verlag New York Inc. 1986 Calculation.Surfaces.behavior.equation.geometry.i

[復(fù)制鏈接]
樓主: Defect
31#
發(fā)表于 2025-3-26 21:58:00 | 只看該作者
Equilibrium Capillary Surfaces978-1-4613-8584-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
32#
發(fā)表于 2025-3-27 04:54:36 | 只看該作者
33#
發(fā)表于 2025-3-27 08:24:23 | 只看該作者
34#
發(fā)表于 2025-3-27 09:28:08 | 只看該作者
The Symmetric Sessile Drop,pose the plane to be of homogeneous material so that the contact angle . will be constant, 0≤.≤π. Wente has proved [186] that under these conditions any equilibrium surface is generated by an interval of disks centered on a line segment orthogonal to ., so we may restrict attention to that case (see
35#
發(fā)表于 2025-3-27 13:50:09 | 只看該作者
36#
發(fā)表于 2025-3-27 21:51:00 | 只看該作者
37#
發(fā)表于 2025-3-27 22:07:01 | 只看該作者
38#
發(fā)表于 2025-3-28 03:03:37 | 只看該作者
Identities and Isoperimetric Relations,ions of §8.9. Further integral relations involving mean curvature on surfaces can be found, e.g., in Minkowski [133] and Hsiung [102]. The following result of [30] seems not to be generally known. Let . denote a domain in 3-space (or its volume), let ?.=. have mean curvature .. If . is star with res
39#
發(fā)表于 2025-3-28 08:19:21 | 只看該作者
0072-7830 orms with another fluid (or gas) a free surface interface, then the interface will be referred to as a capillary surface.978-1-4613-8586-8978-1-4613-8584-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
40#
發(fā)表于 2025-3-28 12:10:36 | 只看該作者
Book 1986 whenever two different materials are situated adjacent to each other and do not mix. If one (at least) of the materials is a fluid, which forms with another fluid (or gas) a free surface interface, then the interface will be referred to as a capillary surface.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 18:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝丰县| 虹口区| 哈密市| 革吉县| 桂平市| 绥芬河市| 正镶白旗| 黄山市| 汽车| 大冶市| 花垣县| 广平县| 噶尔县| 来安县| 镇巴县| 剑川县| 蒲江县| 墨竹工卡县| 连山| 新蔡县| 高平市| 岳阳县| 彩票| 连城县| 祁连县| 哈尔滨市| 仁化县| 安泽县| 西峡县| 皋兰县| 樟树市| 平谷区| 集贤县| 福州市| 云梦县| 玉溪市| 南皮县| 屏南县| 崇阳县| 永昌县| 康定县|