找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 20043rd edition Springer Science+Business Media New York 2004 Mathematica.a

[復(fù)制鏈接]
樓主: 精明
41#
發(fā)表于 2025-3-28 15:37:56 | 只看該作者
42#
發(fā)表于 2025-3-28 22:01:43 | 只看該作者
Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems,list of all generic one-parameter bifurcations is unknown. In this chapter we study several unrelated bifurcations that occur in one-parameter continuous-time dynamical systems.where . is a smooth function of (., .). We start by considering global bifurcations of orbits that are homoclinic to nonhyp
43#
發(fā)表于 2025-3-28 23:49:18 | 只看該作者
Two-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems,ch bifurcations. Then, we derive a . for each bifurcation in the minimal possible phase dimension and specify relevant genericity conditions. Next, we truncate higher-order terms and present the bifurcation diagrams of the resulting system. The analysis is completed by a discussion of the effect of
44#
發(fā)表于 2025-3-29 03:30:07 | 只看該作者
Two-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems,r the final two bifurcations in the previous chapter, the description of the majority of these bifurcations is incomplete in principle. For all but two cases, only . normal forms can be constructed. Some of these normal forms will be presented in terms of associated planar continuous-time systems wh
45#
發(fā)表于 2025-3-29 08:17:42 | 只看該作者
Numerical Analysis of Bifurcations, routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location of equilibria (fixed points)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 19:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安义县| 耿马| 永新县| 蒲江县| 嘉祥县| 宣威市| 盐亭县| 南岸区| 宝鸡市| 上高县| 蓬溪县| 兴城市| 合水县| 奈曼旗| 和硕县| 南澳县| 东乌| 资源县| 阿荣旗| 莲花县| 潢川县| 望都县| 唐河县| 博乐市| 驻马店市| 中西区| 绩溪县| 广南县| 城步| 阳信县| 碌曲县| 闸北区| 克拉玛依市| 金塔县| 靖江市| 玉山县| 达孜县| 韩城市| 明星| 宁城县| 磐安县|