找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 20043rd edition Springer Science+Business Media New York 2004 Mathematica.a

[復(fù)制鏈接]
樓主: 精明
11#
發(fā)表于 2025-3-23 11:03:47 | 只看該作者
https://doi.org/10.1007/978-981-19-1794-3 routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location of equilibria (fixed points)
12#
發(fā)表于 2025-3-23 14:48:01 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:02 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:36 | 只看該作者
Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria, dynamical systems. First we consider in detail two- and three-dimensional cases where geometrical intuition can be fully exploited. Then we show how to reduce generic .-dimensional cases to the considered ones plus a four-dimensional case treated in Appendix A.
18#
發(fā)表于 2025-3-24 18:55:21 | 只看該作者
19#
發(fā)表于 2025-3-24 20:09:24 | 只看該作者
Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems,urcations in symmetric systems, which are those systems that are invariant with respect to the representation of a certain symmetry group. After giving some general results on bifurcations in such systems, we restrict our attention to bifurcations of equilibria and cycles in the presence of the simp
20#
發(fā)表于 2025-3-24 23:32:57 | 只看該作者
Numerical Analysis of Bifurcations,. Appendix B gives some background information on the bialternate matrix product used to detect Hopf and Neimark-Sacker bifurcations. Appendix C presents numerical methods for detection of higher-order homoclinic bifurcations. The bibliographical notes in Appendix D include references to standard no
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仆寺旗| 温泉县| 尚义县| 铁力市| 河源市| 井冈山市| 攀枝花市| 灵璧县| 柯坪县| 登封市| 南郑县| 武宁县| 松滋市| 东乡族自治县| 宜城市| 迁西县| 阳山县| 霍城县| 庄河市| 建水县| 文安县| 宿迁市| 苗栗市| 吉林省| 开封县| 新泰市| 岑溪市| 淳化县| 皮山县| 根河市| 鲜城| 滨海县| 淳安县| 交口县| 博爱县| 湖南省| 伊金霍洛旗| 五台县| 武乡县| 堆龙德庆县| 白城市|