找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Number Theory; Gareth A. Jones,J. Mary Jones Textbook 1998 Springer-Verlag London 1998 Mersenne prime.Prime.Prime number.Rieman

[復(fù)制鏈接]
樓主: 衰退
21#
發(fā)表于 2025-3-25 03:41:12 | 只看該作者
22#
發(fā)表于 2025-3-25 08:26:14 | 只看該作者
,Zur Komplexit?t des Simplexalgorithmus,n find them. One of the main applications of this is to the solution of quadratic congruences, but we will also deduce a proof that there are infinitely many primes . = 1 mod (4), and we will give a useful primality test for Fermat numbers.
23#
發(fā)表于 2025-3-25 15:32:54 | 只看該作者
24#
發(fā)表于 2025-3-25 17:14:20 | 只看該作者
25#
發(fā)表于 2025-3-25 20:46:00 | 只看該作者
,Euler’s Function,erse under multiplication. We shall see how to evaluate this function, study its basic properties, and see how it can be applied to various problems such as the calculation of large powers and the encoding of secret messages.
26#
發(fā)表于 2025-3-26 00:52:02 | 只看該作者
27#
發(fā)表于 2025-3-26 06:01:27 | 只看該作者
28#
發(fā)表于 2025-3-26 11:01:08 | 只看該作者
,Fermat’s Last Theorem,the greatest achievements of modern mathematics. Although the problem was first posed in the 17th century, its roots can be traced back, through the Greek mathematicians Diophantos and Pythagoras, to the unknown Babylonian mathematicians who recorded their results on clay tablets nearly four thousand years ago.
29#
發(fā)表于 2025-3-26 16:15:15 | 只看該作者
1615-2085 Hypothesis.Includes supplementary material: Our intention in writing this book is to give an elementary introduction to number theory which does not demand a great deal of mathematical back- ground or maturity from the reader, and which can be read and understood with no extra assistance. Our first
30#
發(fā)表于 2025-3-26 20:42:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
老河口市| 体育| 清原| 清镇市| 长治市| 石城县| 堆龙德庆县| 昌吉市| 达州市| 屏南县| 巴楚县| 太仆寺旗| 广南县| 洛隆县| 牟定县| 海口市| 登封市| 桦南县| 石阡县| 沂源县| 青河县| 华宁县| 桦甸市| 岳普湖县| 琼结县| 山西省| 建水县| 四子王旗| 蒙阴县| 松桃| 庆云县| 衡南县| 靖边县| 黑河市| 南康市| 兖州市| 夏河县| 安达市| 绍兴县| 临桂县| 碌曲县|