找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Number Theory; Gareth A. Jones,J. Mary Jones Textbook 1998 Springer-Verlag London 1998 Mersenne prime.Prime.Prime number.Rieman

[復(fù)制鏈接]
查看: 10091|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:39:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Elementary Number Theory
編輯Gareth A. Jones,J. Mary Jones
視頻videohttp://file.papertrans.cn/308/307398/307398.mp4
概述The essential guide to number theory for undergraduates.Distinguishing features include discussions of the Riemann Zeta Function and Riemann Hypothesis.Includes supplementary material:
叢書(shū)名稱Springer Undergraduate Mathematics Series
圖書(shū)封面Titlebook: Elementary Number Theory;  Gareth A. Jones,J. Mary Jones Textbook 1998 Springer-Verlag London 1998 Mersenne prime.Prime.Prime number.Rieman
描述Our intention in writing this book is to give an elementary introduction to number theory which does not demand a great deal of mathematical back- ground or maturity from the reader, and which can be read and understood with no extra assistance. Our first three chapters are based almost entirely on A-level mathematics, while the next five require little else beyond some el- ementary group theory. It is only in the last three chapters, where we treat more advanced topics, including recent developments, that we require greater mathematical background; here we use some basic ideas which students would expect to meet in the first year or so of a typical undergraduate course in math- ematics. Throughout the book, we have attempted to explain our arguments as fully and as clearly as possible, with plenty of worked examples and with outline solutions for all the exercises. There are several good reasons for choosing number theory as a subject. It has a long and interesting history, ranging from the earliest recorded times to the present day (see Chapter 11, for instance, on Fermat‘s Last Theorem), and its problems have attracted many of the greatest mathematicians; consequently the study
出版日期Textbook 1998
關(guān)鍵詞Mersenne prime; Prime; Prime number; Riemann zeta function; calculus; cryptography; number theory
版次1
doihttps://doi.org/10.1007/978-1-4471-0613-5
isbn_softcover978-3-540-76197-6
isbn_ebook978-1-4471-0613-5Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightSpringer-Verlag London 1998
The information of publication is updating

書(shū)目名稱Elementary Number Theory影響因子(影響力)




書(shū)目名稱Elementary Number Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱Elementary Number Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Elementary Number Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Elementary Number Theory被引頻次




書(shū)目名稱Elementary Number Theory被引頻次學(xué)科排名




書(shū)目名稱Elementary Number Theory年度引用




書(shū)目名稱Elementary Number Theory年度引用學(xué)科排名




書(shū)目名稱Elementary Number Theory讀者反饋




書(shū)目名稱Elementary Number Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:01:04 | 只看該作者
1615-2085 e earliest recorded times to the present day (see Chapter 11, for instance, on Fermat‘s Last Theorem), and its problems have attracted many of the greatest mathematicians; consequently the study 978-3-540-76197-6978-1-4471-0613-5Series ISSN 1615-2085 Series E-ISSN 2197-4144
板凳
發(fā)表于 2025-3-22 03:29:03 | 只看該作者
地板
發(fā)表于 2025-3-22 05:18:40 | 只看該作者
https://doi.org/10.1007/978-3-658-39503-2 and theorems are valid for certain other objects which can be added, subtracted and multiplied; some of these objects, such as polynomials, are very familiar, while others, such as Gaussian integers and quaternions, will be introduced in later chapters. These generalisations of the integers are als
5#
發(fā)表于 2025-3-22 09:00:35 | 只看該作者
Gareth A. Jones,J. Mary JonesThe essential guide to number theory for undergraduates.Distinguishing features include discussions of the Riemann Zeta Function and Riemann Hypothesis.Includes supplementary material:
6#
發(fā)表于 2025-3-22 13:16:35 | 只看該作者
7#
發(fā)表于 2025-3-22 18:18:25 | 只看該作者
https://doi.org/10.1007/978-3-658-39503-2 already, though it may not have been treated as formally as here. There are several good reasons for giving very precise definitions and proofs, even when there is general agreement about the validity of the mathematics involved. The first is that ‘general agreement’ is not the same as convincing p
8#
發(fā)表于 2025-3-22 21:42:18 | 只看該作者
9#
發(fā)表于 2025-3-23 01:30:18 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 08:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滁州市| 长沙县| 满城县| 白河县| 莱西市| 全州县| 武宁县| 满洲里市| 新巴尔虎右旗| 尼玛县| 乐昌市| 南皮县| 临湘市| 临西县| 蓬莱市| 察隅县| 肥乡县| 邹城市| 土默特右旗| 利川市| 岑巩县| 宜兰市| 岳西县| 竹溪县| 宜州市| 车致| 新和县| 务川| 咸阳市| 尼玛县| 瑞金市| 阳高县| 喜德县| 江西省| 慈利县| 达拉特旗| 汤阴县| 蚌埠市| 大荔县| 顺昌县| 岫岩|