找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[復(fù)制鏈接]
樓主: Recovery
41#
發(fā)表于 2025-3-28 16:18:57 | 只看該作者
Riemannian Functionals,y can be recovered from the action (math) (total scalar curvature). His paper contains prophetic ideas about the role played by the diffeomorphism group, which he already considered as a “gauge group”.
42#
發(fā)表于 2025-3-28 22:43:17 | 只看該作者
43#
發(fā)表于 2025-3-28 23:16:20 | 只看該作者
Book 1987 which presents an up-to-date overview of the state of the art in this field. "Einstein Manifold"s is a successful attempt to organize the abundant literature, with emphasis on examples. Parts of it can be used separately as introduction to modern Riemannian geometry through topics like homogeneous spaces, submersions, or Riemannian functionals..
44#
發(fā)表于 2025-3-29 06:28:05 | 只看該作者
https://doi.org/10.1007/978-3-642-29546-1these circumstances, it has been possible to exhibit some existence theorems of Einstein metrics in the K?hler framework (Calabi-Yau and Aubin-Calabi-Yau theorems) which have no counterpart in general Riemannian geometry.
45#
發(fā)表于 2025-3-29 07:27:12 | 只看該作者
46#
發(fā)表于 2025-3-29 15:12:22 | 只看該作者
47#
發(fā)表于 2025-3-29 16:06:21 | 只看該作者
Geburtshilfliche Operationslehred . and a metric tensor field . which is a positive definite bilinear symmetric differential form on .. In other words, we associate with every point . of . a Euclidean structure .. on the tangent space ... of . at . and require the association . ? .. to be ... We say that . is a Riemannian . on ..
48#
發(fā)表于 2025-3-29 22:21:23 | 只看該作者
49#
發(fā)表于 2025-3-30 02:44:29 | 只看該作者
50#
發(fā)表于 2025-3-30 07:53:54 | 只看該作者
Book 1987em. Recently, it has produced several striking results, which have been of great interest also to physicists. This Ergebnisse volume is the first book which presents an up-to-date overview of the state of the art in this field. "Einstein Manifold"s is a successful attempt to organize the abundant li
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 16:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临漳县| 呼图壁县| 蓝山县| 中阳县| 永善县| 容城县| 麻江县| 乐平市| 沁阳市| 金乡县| 巴林右旗| 达日县| 米易县| 邵阳市| 中宁县| 邳州市| 金沙县| 安国市| 林州市| 徐闻县| 卢龙县| 丽水市| 确山县| 正宁县| 星座| 昌邑市| 炉霍县| 施秉县| 敦煌市| 津南区| 定襄县| 建瓯市| 多伦县| 平山县| 吉隆县| 新晃| 汉沽区| 呼图壁县| 伊金霍洛旗| 阳泉市| 建昌县|