找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[復制鏈接]
樓主: Recovery
21#
發(fā)表于 2025-3-25 05:33:51 | 只看該作者
Homogeneous Riemannian Manifolds,In this chapter, we sketch the general theory of homogeneous Riemannian manifolds and we use it to give some examples of (homogeneous) Einstein manifolds. Up to now, the general classification of homogeneous Einstein manifolds is not known even in the compact case. In particular, the following question is still an open problem.
22#
發(fā)表于 2025-3-25 07:55:26 | 只看該作者
23#
發(fā)表于 2025-3-25 13:09:56 | 只看該作者
Riemannian Submersions,The notion of . (see 1.70) has been intensively studied since the very beginning of Riemannian geometry. Indeed the first Riemannian manifolds to be studied were surfaces imbedded in R.. As a consequence, the differential geometry of Riemannian immersions is well known and available in many textbooks (see for example [Ko-No 1, 2], [Spi]).
24#
發(fā)表于 2025-3-25 19:18:20 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:44 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:54 | 只看該作者
Arthur L. BesseIncludes supplementary material:
27#
發(fā)表于 2025-3-26 06:28:31 | 只看該作者
28#
發(fā)表于 2025-3-26 09:03:54 | 只看該作者
https://doi.org/10.1007/978-3-540-74311-8Einstein; Manifolds; Riemannian geometry; Submersion; Topology; Volume; curvature; equation; function; geomet
29#
發(fā)表于 2025-3-26 16:22:41 | 只看該作者
978-3-540-74120-6Springer-Verlag Berlin Heidelberg 1987
30#
發(fā)表于 2025-3-26 18:46:48 | 只看該作者
Geburtshilfliche Operationslehref an infinity of small pieces of Euclidean spaces). In modern language, a Riemannian manifold (.) consists of the following data: a compact .. manifold . and a metric tensor field . which is a positive definite bilinear symmetric differential form on .. In other words, we associate with every point
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-20 11:04
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平陆县| 泽州县| 星子县| 望江县| 肥城市| 济宁市| 加查县| 济南市| 忻城县| 兴业县| 沂水县| 廊坊市| 澄迈县| 宝坻区| 阳山县| 土默特右旗| 大关县| 绍兴县| 黔西| 枝江市| 五常市| 廉江市| 商都县| 阜新| 崇明县| 平昌县| 长海县| 乡城县| 日照市| 增城市| 雷山县| 鄂伦春自治旗| 久治县| 漳州市| 博爱县| 山丹县| 甘南县| 靖宇县| 福安市| 镇雄县| 积石山|