找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Document Analysis and Recognition – ICDAR 2024 Workshops; Athens, Greece, Augu Harold Mouchère,Anna Zhu Conference proceedings 2024 The Edi

[復制鏈接]
樓主: postpartum
11#
發(fā)表于 2025-3-23 12:21:35 | 只看該作者
Comics Datasets Framework: Mix of?Comics Datasets for?Detection Benchmarkingarch on comics has evolved from basic object detection to more sophisticated tasks. However, the field faces persistent challenges such as small datasets, inconsistent annotations, inaccessible model weights, and results that cannot be directly compared due to varying train/test splits and metrics.
12#
發(fā)表于 2025-3-23 17:03:30 | 只看該作者
A Comprehensive Gold Standard and?Benchmark for?Comics Text Detection and?Recognitionfrom comic books. To do this, we developed a pipeline for OCR processing and labeling of comic books and created the first text detection and recognition datasets for Western comics, called . and .. We evaluated the performance of fine-tuned state-of-the-art text detection and recognition models on
13#
發(fā)表于 2025-3-23 21:13:51 | 只看該作者
Toward Accessible Comics for?Blind and?Low Vision Readersext description of the full story, ready to be forwarded to off-the-shelve speech synthesis tools. We propose to use existing computer vision and optical character recognition techniques to build a grounded context from the comic strip image content, such as panels, characters, text, reading order a
14#
發(fā)表于 2025-3-24 01:20:51 | 只看該作者
15#
發(fā)表于 2025-3-24 03:40:44 | 只看該作者
Spatially Augmented Speech Bubble to?Character Association via?Comic Multi-task Learningg increased attention as it enhances the accessibility and analyzability of this rapidly growing medium. Current methods often struggle with the complex spatial relationships within comic panels, which lead to inconsistent associations. To address these shortcomings, we developed a robust machine le
16#
發(fā)表于 2025-3-24 08:37:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:30:19 | 只看該作者
18#
發(fā)表于 2025-3-24 17:34:35 | 只看該作者
19#
發(fā)表于 2025-3-24 21:05:49 | 只看該作者
ances visual and linguistic information, preserving the authenticity of the original texts. Furthermore, the model is able to adapt to historical data even when the recogniser is trained solely on contemporary data, mitigating the need for a large number of annotated historical handwritten images.
20#
發(fā)表于 2025-3-25 00:52:46 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-21 03:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丽水市| 巴林右旗| 淳安县| 莱西市| 呼伦贝尔市| 崇文区| 旬邑县| 霍林郭勒市| 太原市| 邓州市| 芦山县| 定远县| 朔州市| 谢通门县| 德钦县| 彭水| 五家渠市| 黄山市| 定州市| 木里| 武义县| 阜宁县| 额敏县| 吉林省| 资源县| 吉隆县| 黑龙江省| 嘉荫县| 丹棱县| 西乌珠穆沁旗| 邮箱| 瑞金市| 长葛市| 马关县| 井陉县| 铁岭市| 响水县| 襄汾县| 营口市| 卓尼县| 开鲁县|