找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Video Understanding; Zuxuan Wu,Yu-Gang Jiang Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: digestive-tract
21#
發(fā)表于 2025-3-25 03:53:19 | 只看該作者
Overview of Video Understanding,tal media, video owns the unique charm of conveying rich and vivid information, making it more and more popular on various social platforms. At the same time, video understanding techniques, which aim to recognize the objects and actions within videos and analyze their temporal evolution, are gainin
22#
發(fā)表于 2025-3-25 08:04:19 | 只看該作者
23#
發(fā)表于 2025-3-25 14:26:04 | 只看該作者
24#
發(fā)表于 2025-3-25 16:32:03 | 只看該作者
Deep Learning for Video Localization,wever, video recognition is limited in understanding the overall event that exists in a video, without a fine-grained analysis of video segments. To compensate for the limitations of video recognition, video localization provides an accurate and comprehensive understanding of videos by predicting wh
25#
發(fā)表于 2025-3-25 23:24:24 | 只看該作者
26#
發(fā)表于 2025-3-26 00:46:11 | 只看該作者
Unsupervised Feature Learning for Video Understanding,of large-scale training datasets. Vast amounts of annotated data have led to the growth in the performance of supervised learning; nevertheless, manual collection and annotation are demanding of time and labor. Subsequently, research interests have been aroused in unsupervised feature learning that
27#
發(fā)表于 2025-3-26 06:37:28 | 只看該作者
Efficient Video Understanding,a result, the development of efficient deep video models and training strategies is necessary for practical video understanding applications. In this chapter, we will delve into the design choices for creating compact video understanding models, such as CNNs and Transformers. Furthermore, we will ex
28#
發(fā)表于 2025-3-26 09:42:15 | 只看該作者
Conclusion and Future Directions,hapters. Furthermore, this chapter will also look into the future of deep-learning-based video understanding by briefly discussing several promising directions, e.g., the construction of large-scale video foundation models, the application of large language models (LLMs) in video understanding, etc.
29#
發(fā)表于 2025-3-26 12:48:38 | 只看該作者
30#
發(fā)表于 2025-3-26 19:16:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰镇市| 卢湾区| 微博| 临颍县| 山丹县| 同仁县| 宜丰县| 六枝特区| 遂昌县| 邢台市| 枞阳县| 栾城县| 永胜县| 长海县| 镇安县| 宁化县| 庆阳市| 西峡县| 麻江县| 奎屯市| 文登市| 监利县| 崇信县| 平安县| 交城县| 汉源县| 龙陵县| 边坝县| 白银市| 潜山县| 木兰县| 金坛市| 海阳市| 仁寿县| 潼南县| 延川县| 普洱| 满城县| 垣曲县| 尚志市| 新营市|