找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Video Understanding; Zuxuan Wu,Yu-Gang Jiang Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
查看: 12404|回復(fù): 45
樓主
發(fā)表于 2025-3-21 20:09:09 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Deep Learning for Video Understanding
編輯Zuxuan Wu,Yu-Gang Jiang
視頻videohttp://file.papertrans.cn/285/284501/284501.mp4
概述Presents an overview of deep learning techniques for video understanding.Covers important topics like action recognition, action localization, video captioning, and more.Introduces cutting-edge and st
叢書(shū)名稱Wireless Networks
圖書(shū)封面Titlebook: Deep Learning for Video Understanding;  Zuxuan Wu,Yu-Gang Jiang Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.This book presents deep learning techniques for video understanding. For deep learning basics, the authors cover machine learning pipelines and notations, 2D and 3D Convolutional Neural Networks for spatial and temporal feature learning. For action recognition, the authors introduce classical frameworks for image classification, and then elaborate both image-based and clip-based 2D/3D CNN networks for action recognition. For action detection, the authors elaborate sliding windows, proposal-based detection methods, single stage and two stage approaches, spatial and temporal action localization, followed by datasets introduction. For video captioning, the authors present language-based models and how to perform sequence to sequence learning for video captioning. For unsupervised feature learning, the authors discuss the necessity of shifting from supervised learning to unsupervised learning and then introduce how to design better surrogate training tasks to learn video representations. Finally, the book introduces recent self-training pipelines like contrastive learning and masked image/video modeling with transformers. The book provides promising directions, with an aim to promote
出版日期Book 2024
關(guān)鍵詞action recognition; video captioning; action localization; motion extraction; spatial-temporal feature l
版次1
doihttps://doi.org/10.1007/978-3-031-57679-9
isbn_softcover978-3-031-57681-2
isbn_ebook978-3-031-57679-9Series ISSN 2366-1186 Series E-ISSN 2366-1445
issn_series 2366-1186
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Deep Learning for Video Understanding影響因子(影響力)




書(shū)目名稱Deep Learning for Video Understanding影響因子(影響力)學(xué)科排名




書(shū)目名稱Deep Learning for Video Understanding網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Deep Learning for Video Understanding網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Deep Learning for Video Understanding被引頻次




書(shū)目名稱Deep Learning for Video Understanding被引頻次學(xué)科排名




書(shū)目名稱Deep Learning for Video Understanding年度引用




書(shū)目名稱Deep Learning for Video Understanding年度引用學(xué)科排名




書(shū)目名稱Deep Learning for Video Understanding讀者反饋




書(shū)目名稱Deep Learning for Video Understanding讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:14:08 | 只看該作者
Book 2024ng and then introduce how to design better surrogate training tasks to learn video representations. Finally, the book introduces recent self-training pipelines like contrastive learning and masked image/video modeling with transformers. The book provides promising directions, with an aim to promote
板凳
發(fā)表于 2025-3-22 01:57:04 | 只看該作者
the hotbeds of pretext tasks, which refer to network optimization tasks based on surrogate signals without human supervision, facilitating better performance on video-related downstream tasks. In this chapter, we undertake a comprehensive review of UVL, which begins with a preliminary introduction o
地板
發(fā)表于 2025-3-22 08:19:14 | 只看該作者
5#
發(fā)表于 2025-3-22 09:48:32 | 只看該作者
2366-1186 n, video captioning, and more.Introduces cutting-edge and st.This book presents deep learning techniques for video understanding. For deep learning basics, the authors cover machine learning pipelines and notations, 2D and 3D Convolutional Neural Networks for spatial and temporal feature learning. F
6#
發(fā)表于 2025-3-22 15:10:33 | 只看該作者
7#
發(fā)表于 2025-3-22 18:20:38 | 只看該作者
Angst – Bedingung des Mensch-Seinsirections, e.g., the construction of large-scale video foundation models, the application of large language models (LLMs) in video understanding, etc. By depicting these exciting prospects, we encourage the readers to embark on new endeavors to contribute to the advancement of this field.
8#
發(fā)表于 2025-3-22 23:24:38 | 只看該作者
Book 2024ions, 2D and 3D Convolutional Neural Networks for spatial and temporal feature learning. For action recognition, the authors introduce classical frameworks for image classification, and then elaborate both image-based and clip-based 2D/3D CNN networks for action recognition. For action detection, th
9#
發(fā)表于 2025-3-23 02:50:19 | 只看該作者
,I. Führung der eigenen Person,en successively proposed, promoting this large field to becoming more and more mature. In this chapter, we will briefly introduce the above aspects and travel through the corridors of time to systematically review the chronology of this dynamic field.
10#
發(fā)表于 2025-3-23 09:34:22 | 只看該作者
Fallstudien ?Führung von Experten“ons of these backbones. By the end of the chapter, readers will have a solid understanding of the basics of deep learning for video understanding and be well-equipped to explore more advanced topics in this exciting field.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴彦淖尔市| 北票市| 古丈县| 来宾市| 齐齐哈尔市| 大竹县| 济源市| 黄浦区| 贺州市| 绥芬河市| 长治市| 紫金县| 法库县| 海南省| 黑山县| 平利县| 凉城县| 枝江市| 怀集县| 错那县| 高密市| 图片| 阜南县| 安西县| 大竹县| 志丹县| 和林格尔县| 乃东县| 武义县| 江油市| 关岭| 家居| 霍州市| 新巴尔虎右旗| 湄潭县| 白水县| 苏尼特左旗| 湘乡市| 台北县| 昭苏县| 奎屯市|