找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Drinfeld Modules; Mihran Papikian Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natur

[復(fù)制鏈接]
樓主: 游牧
21#
發(fā)表于 2025-3-25 04:52:18 | 只看該作者
22#
發(fā)表于 2025-3-25 09:56:05 | 只看該作者
Algebraic Preliminaries,sis on the concepts that are particularly important in this book, such as the ring of polynomials, modules over this ring, algebraic and inseparable field extensions, finite fields, and central simple algebras.
23#
發(fā)表于 2025-3-25 12:42:14 | 只看該作者
24#
發(fā)表于 2025-3-25 17:17:23 | 只看該作者
Basic Properties of Drinfeld Modules, . acts via certain linearized polynomials in .[.]. In this chapter, we study the basic properties of Drinfeld modules which are valid over arbitrary fields. Later in the book we will be interested in the properties of Drinfeld modules defined over arithmetically interesting fields, such as finite f
25#
發(fā)表于 2025-3-25 20:13:23 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:55 | 只看該作者
27#
發(fā)表于 2025-3-26 05:38:37 | 只看該作者
Chen Change Loy,Ping Luo,Chen Huangsome basic notions of analysis in the setting of complete non-Archimedean fields, such as the radius of convergence of a power series, the Weierstrass factorization theorem, and the existence and distribution of zeros of entire functions.
28#
發(fā)表于 2025-3-26 09:30:00 | 只看該作者
Textbook 2023irst two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic
29#
發(fā)表于 2025-3-26 16:20:27 | 只看該作者
30#
發(fā)表于 2025-3-26 18:26:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林芝县| 长春市| 武城县| 炉霍县| 乐清市| 收藏| 忻州市| 金乡县| 皋兰县| 昭觉县| 韶关市| 盘锦市| 汉沽区| 平远县| 海林市| 高青县| 修武县| 保定市| 金昌市| 万年县| 鞍山市| 莒南县| 南投县| 松原市| 西城区| 吉木乃县| 永康市| 乡宁县| 华池县| 青州市| 环江| 彭阳县| 郑州市| 阿克陶县| 阳春市| 精河县| 蓬莱市| 崇仁县| 黔西| 杂多县| 郎溪县|