找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Drinfeld Modules; Mihran Papikian Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natur

[復(fù)制鏈接]
樓主: 游牧
11#
發(fā)表于 2025-3-23 10:39:25 | 只看該作者
Optimal Damping of Random Excited SystemsIn this chapter we study Drinfeld modules defined over a field . which is complete with respect to a discrete valuation.
12#
發(fā)表于 2025-3-23 16:25:32 | 只看該作者
Dynamical Modelling of Vehicle’s ManeuveringLet . be a finite extension of ., considered as an .-field via the natural embeddings.
13#
發(fā)表于 2025-3-23 20:21:39 | 只看該作者
14#
發(fā)表于 2025-3-24 01:35:40 | 只看該作者
Drinfeld Modules over Local Fields,In this chapter we study Drinfeld modules defined over a field . which is complete with respect to a discrete valuation.
15#
發(fā)表于 2025-3-24 05:12:54 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:58 | 只看該作者
https://doi.org/10.1007/978-3-031-19707-9Drinfield modules; Function field arithmetic; Finite fields and linearized polynomials; Non-archimedean
17#
發(fā)表于 2025-3-24 11:04:15 | 只看該作者
978-3-031-19709-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
18#
發(fā)表于 2025-3-24 16:05:42 | 只看該作者
Introduction to Visual Attributes,sis on the concepts that are particularly important in this book, such as the ring of polynomials, modules over this ring, algebraic and inseparable field extensions, finite fields, and central simple algebras.
19#
發(fā)表于 2025-3-24 19:35:22 | 只看該作者
Chen Change Loy,Ping Luo,Chen Huanglemma, the Newton polygon method, extensions of local fields, ramification, and valuations and completions of global function fields. We also discuss some basic notions of analysis in the setting of complete non-Archimedean fields, such as the radius of convergence of a power series, the Weierstrass
20#
發(fā)表于 2025-3-25 02:37:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 16:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会宁县| 敦煌市| 日土县| 博兴县| 天长市| 聊城市| 云龙县| 绥化市| 五家渠市| 依兰县| 吐鲁番市| 高邑县| 拜泉县| 肥西县| 安仁县| 舞阳县| 安陆市| 铁岭县| 江安县| 上虞市| 正定县| 壤塘县| 通河县| 宁远县| 个旧市| 福建省| 延川县| 夏邑县| 营山县| 嘉定区| 桐梓县| 曲周县| 连江县| 栾川县| 新竹县| 蓬莱市| 塔河县| 彭州市| 桑植县| 阿克陶县| 信丰县|