找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Drinfeld Modules; Mihran Papikian Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natur

[復制鏈接]
查看: 10511|回復: 40
樓主
發(fā)表于 2025-3-21 19:32:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Drinfeld Modules
編輯Mihran Papikian
視頻videohttp://file.papertrans.cn/283/282868/282868.mp4
概述Offers an accessible introduction to Drinfeld modules.Features a hands-on, "computational" style, containing numerous exercises.Provides a self-contained, high-quality reference for researchers
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Drinfeld Modules;  Mihran Papikian Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Natur
描述This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory..After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized..Drinfeld Modules. guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-containe
出版日期Textbook 2023
關鍵詞Drinfield modules; Function field arithmetic; Finite fields and linearized polynomials; Non-archimedean
版次1
doihttps://doi.org/10.1007/978-3-031-19707-9
isbn_softcover978-3-031-19709-3
isbn_ebook978-3-031-19707-9Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Drinfeld Modules影響因子(影響力)




書目名稱Drinfeld Modules影響因子(影響力)學科排名




書目名稱Drinfeld Modules網(wǎng)絡公開度




書目名稱Drinfeld Modules網(wǎng)絡公開度學科排名




書目名稱Drinfeld Modules被引頻次




書目名稱Drinfeld Modules被引頻次學科排名




書目名稱Drinfeld Modules年度引用




書目名稱Drinfeld Modules年度引用學科排名




書目名稱Drinfeld Modules讀者反饋




書目名稱Drinfeld Modules讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:15:50 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:31:56 | 只看該作者
地板
發(fā)表于 2025-3-22 04:54:16 | 只看該作者
https://doi.org/10.1007/978-3-319-51008-8ry is that the Frobenius .?:=?.. commutes with every other element of ., hence .[.] is a subring of . for any Drinfeld module .; this simple observation is the starting point of the main results of this chapter.
5#
發(fā)表于 2025-3-22 09:49:53 | 只看該作者
6#
發(fā)表于 2025-3-22 16:32:07 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/e/image/282868.jpg
7#
發(fā)表于 2025-3-22 18:39:39 | 只看該作者
8#
發(fā)表于 2025-3-23 00:33:37 | 只看該作者
9#
發(fā)表于 2025-3-23 04:14:52 | 只看該作者
10#
發(fā)表于 2025-3-23 06:57:12 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沧源| 罗定市| 邵东县| 浦县| 山西省| 安龙县| 黔西| 焦作市| 云和县| 乐清市| 徐水县| 遂宁市| 盐山县| 江川县| 格尔木市| 依兰县| 南昌市| 梅州市| 资溪县| 桐城市| 屯门区| 山阳县| 井研县| 大石桥市| 怀宁县| 扶绥县| 临城县| 绿春县| 永定县| 宜川县| 万年县| 东乌珠穆沁旗| 荆门市| 瑞安市| 修武县| 新乐市| 丁青县| 农安县| 马鞍山市| 裕民县| 贵港市|