找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Second MICCAI Worksh Shadi Albarqouni,Spyridon B

[復(fù)制鏈接]
樓主: 矜持
31#
發(fā)表于 2025-3-26 23:58:17 | 只看該作者
32#
發(fā)表于 2025-3-27 01:45:57 | 只看該作者
Subhadeep Biswas,Ankurita Nath,Anjali Palious methods typically assume that multi-site data are sampled from the same distribution. Such an assumption may not hold in practice due to the data heterogeneity caused by different scanning parameters and subject populations in multiple imaging sites. Even though several deep domain adaptation m
33#
發(fā)表于 2025-3-27 07:37:38 | 只看該作者
34#
發(fā)表于 2025-3-27 12:14:09 | 只看該作者
Marc Lunkenheimer,Alexander H. Kracklauerge of images from different modalities has great clinical benefits. However, the generalization ability of deep networks on different modalities is challenging due to domain shift. In this work, we investigate the challenging unsupervised domain adaptation problem of cross-modality medical image seg
35#
發(fā)表于 2025-3-27 14:45:54 | 只看該作者
Mirna Leko ?imi?,Helena ?timac,Sendi De?eli?vised approaches by combining labelled and unlabelled data can offer a solution to data scarcity. An approach to semi-supervised learning relies on reconstruction objectives (as self-supervision objectives) that learns in a joint fashion suitable representations for the task. Here, we propose Anatom
36#
發(fā)表于 2025-3-27 17:57:41 | 只看該作者
37#
發(fā)表于 2025-3-28 01:33:02 | 只看該作者
38#
發(fā)表于 2025-3-28 02:45:26 | 只看該作者
Sehoon Kwon,Jaechun No,Sung-soon Park sites result in dramatic drops of CNN segmentation quality on unseen domains. Many of the recently proposed MRI domain adaptation methods operate with the last CNN layers to suppress domain shift. At the same time, the core manifestation of MRI variability is a considerable diversity of image inten
39#
發(fā)表于 2025-3-28 07:59:37 | 只看該作者
40#
發(fā)表于 2025-3-28 14:27:04 | 只看該作者
G. Gupta,R. Shrivastava,J. Khan,N. K. Singhant against nuisance factors is an open question. This is done by removing sensitive information from the learned representation. Such privacy-preserving representations are believed to be beneficial to some medical and federated learning applications. In this paper, a framework for learning invaria
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵川县| 大渡口区| 湖北省| 原平市| 高雄县| 长春市| 台中市| 望都县| 古丈县| 朝阳县| 大竹县| 朝阳市| 上杭县| 福安市| 綦江县| 怀柔区| 余干县| 马龙县| 吴江市| 获嘉县| 香港 | 宁波市| 泰宁县| 上思县| 石狮市| 信丰县| 绵阳市| 兴和县| 东至县| 南乐县| 乐安县| 常熟市| 蚌埠市| 铜陵市| 清苑县| 宜兰县| 塔城市| 永宁县| 民勤县| 玛沁县| 当雄县|