找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Second MICCAI Worksh Shadi Albarqouni,Spyridon B

[復制鏈接]
查看: 48000|回復: 59
樓主
發(fā)表于 2025-3-21 17:41:59 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning
副標題Second MICCAI Worksh
編輯Shadi Albarqouni,Spyridon Bakas,Ziyue Xu
視頻videohttp://file.papertrans.cn/283/282484/282484.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning; Second MICCAI Worksh Shadi Albarqouni,Spyridon B
描述.This book constitutes the refereed proceedings of the Second MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2020, and the First MICCAI Workshop on Distributed and Collaborative Learning, DCL 2020, held in conjunction with MICCAI 2020 in October 2020. The conference was planned to take place in Lima, Peru, but changed to an online format due to the Coronavirus pandemic.?..For DART 2020, 12 full papers were accepted from 18 submissions. They deal with?methodological advancements and ideas that?can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical settings by?making them robust and consistent across different domains..For DCL 2020, the 8 papers included in this book were accepted from a total of 12 submissions. They focus on the comparison, evaluation and discussion of methodological advancement and?practical ideas about machine learning applied to problems where data cannot be stored in centralized?databases; where information privacy is a priority; where it is necessary to deliver strong guarantees on the?amount and nature of private information that may be revealed by the model as a result of training; and where?it
出版日期Conference proceedings 2020
關(guān)鍵詞bioinformatics; computer networks; computer security; computer vision; deep learning; education; image ana
版次1
doihttps://doi.org/10.1007/978-3-030-60548-3
isbn_softcover978-3-030-60547-6
isbn_ebook978-3-030-60548-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning影響因子(影響力)




書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning影響因子(影響力)學科排名




書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning網(wǎng)絡(luò)公開度




書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning網(wǎng)絡(luò)公開度學科排名




書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning被引頻次




書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning被引頻次學科排名




書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning年度引用




書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning年度引用學科排名




書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning讀者反饋




書目名稱Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:36:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:48:37 | 只看該作者
Nabanita Mukhopadhyay,Paramita De results show our approach effectively replaces manual segmentation maps and demonstrate the possibility of obtaining state of the art registration performance in real world cases where manual segmentation maps are unavailable.
地板
發(fā)表于 2025-3-22 07:10:48 | 只看該作者
https://doi.org/10.1007/978-3-031-29422-8canner settings. We propose . (.nverse .istance .ggregation), a novel adaptive weighting approach for clients based on meta-information which handles unbalanced and non-iid data. We extensively analyze and evaluate our method against the well-known . approach, Federated Averaging as a baseline.
5#
發(fā)表于 2025-3-22 10:03:53 | 只看該作者
Registration of Histopathology Images Using Self Supervised Fine Grained Feature Maps results show our approach effectively replaces manual segmentation maps and demonstrate the possibility of obtaining state of the art registration performance in real world cases where manual segmentation maps are unavailable.
6#
發(fā)表于 2025-3-22 13:27:53 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:09 | 只看該作者
8#
發(fā)表于 2025-3-22 22:45:29 | 只看該作者
G. Gupta,R. Shrivastava,J. Khan,N. K. Singhasets for autism detection and healthcare insurance. We compare with two methods and achieve state of the art performance in sensitive information leakage trade-off. A discussion regarding the difficulties of applying fair representation learning to medical data and when it is desirable is presented.
9#
發(fā)表于 2025-3-23 03:30:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:02:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
双城市| 平江县| 大姚县| 余干县| 岫岩| 蕲春县| 东乌珠穆沁旗| 台湾省| 沧州市| 元谋县| 白河县| 赣榆县| 罗平县| 桦川县| 遵化市| 固始县| 富阳市| 深圳市| 茌平县| 高州市| 志丹县| 娱乐| 清流县| 澄江县| 华阴市| 恩施市| 体育| 阿勒泰市| 定结县| 灵宝市| 巴彦县| 肃宁县| 惠水县| 鄂州市| 蛟河市| 凉山| 南岸区| 象州县| 广汉市| 措勤县| 天全县|