找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer; 4th MICCAI Workshop, Konstantinos Kamnitsas,Lisa Koch,Sotirios Tsaftari Conference proceedin

[復制鏈接]
樓主: GLAZE
21#
發(fā)表于 2025-3-25 03:26:59 | 只看該作者
,Supervised Domain Adaptation Using Gradients Transfer for?Improved Medical Image Analysis,d Domain Adaptation (SDA) strategies that focus on this challenge, assume the availability of a limited number of annotated samples from the new site. A typical SDA approach is to pre-train the model on the source site and then fine-tune on the target site. Current research has thus mainly focused o
22#
發(fā)表于 2025-3-25 10:54:04 | 只看該作者
23#
發(fā)表于 2025-3-25 13:39:07 | 只看該作者
24#
發(fā)表于 2025-3-25 18:40:09 | 只看該作者
,Unsupervised Site Adaptation by?Intra-site Variability Alignment,ferent target domain. This is known as the domain-shift problem. In this study, we propose a general method for transfer knowledge from a source site with labeled data to a target site where only unlabeled data is available. We leverage the variability that is often present within each site, the .,
25#
發(fā)表于 2025-3-25 21:27:27 | 只看該作者
26#
發(fā)表于 2025-3-26 00:20:11 | 只看該作者
27#
發(fā)表于 2025-3-26 07:09:42 | 只看該作者
,Feather-Light Fourier Domain Adaptation in?Magnetic Resonance Imaging,en the sets are produced by different hardware. As a consequence of this ., a certain model might perform well on data from one clinic, and then fail when deployed in another. We propose a very light and transparent approach to perform .. The idea is to substitute the . low-frequency Fourier space c
28#
發(fā)表于 2025-3-26 10:34:22 | 只看該作者
,Seamless Iterative Semi-supervised Correction of?Imperfect Labels in?Microscopy Images,growth of cells according to cytotoxicity grade under the microscope. Thus, human fatigue plays a role in error making, making the use of deep learning appealing. Due to the high cost of training data annotation, an approach without manual annotation is needed. We propose ., a new method for trainin
29#
發(fā)表于 2025-3-26 13:23:07 | 只看該作者
,Task-Agnostic Continual Hippocampus Segmentation for?Smooth Population Shifts,training and testing. We explore how such methods perform in a task-agnostic setting that more closely resembles dynamic clinical environments with gradual population shifts. We propose ODEx, a holistic solution that combines out-of-distribution detection with continual learning techniques. Validati
30#
發(fā)表于 2025-3-26 18:14:25 | 只看該作者
,Adaptive Optimization with?Fewer Epochs Improves Across-Scanner Generalization of?U-Net Based Medic are trained on images that have been acquired with a specific scanner, and are applied to images from another scanner. This indicates an overfitting to image characteristics that are irrelevant to the semantic contents, and is usually mitigated with data augmentation. We argue that early stopping a
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 06:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
建阳市| 军事| 阳泉市| 乌海市| 新昌县| 探索| 遂昌县| 洛扎县| 三河市| 泌阳县| 如皋市| 西畴县| 慈利县| 天津市| 常山县| 临沭县| 镇巴县| 凤凰县| 会泽县| 安新县| 赣榆县| 仁怀市| 华宁县| 通渭县| 鹿邑县| 荥阳市| 安丘市| 长子县| 镶黄旗| 广水市| 高密市| 梧州市| 桑日县| 嵩明县| 瓮安县| 洛浦县| 呼伦贝尔市| 桑植县| 天气| 游戏| 离岛区|