找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Domain Adaptation and Representation Transfer; 4th MICCAI Workshop, Konstantinos Kamnitsas,Lisa Koch,Sotirios Tsaftari Conference proceedin

[復(fù)制鏈接]
查看: 14392|回復(fù): 56
樓主
發(fā)表于 2025-3-21 16:10:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Domain Adaptation and Representation Transfer
副標題4th MICCAI Workshop,
編輯Konstantinos Kamnitsas,Lisa Koch,Sotirios Tsaftari
視頻videohttp://file.papertrans.cn/283/282481/282481.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Domain Adaptation and Representation Transfer; 4th MICCAI Workshop, Konstantinos Kamnitsas,Lisa Koch,Sotirios Tsaftari Conference proceedin
描述This book constitutes the refereed proceedings of the 4th MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2022, held in conjunction with MICCAI 2022, in September 2022.?.DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains..?.
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; bioinformatics; clustering algorithms; color image processing; color images; com
版次1
doihttps://doi.org/10.1007/978-3-031-16852-9
isbn_softcover978-3-031-16851-2
isbn_ebook978-3-031-16852-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Domain Adaptation and Representation Transfer影響因子(影響力)




書目名稱Domain Adaptation and Representation Transfer影響因子(影響力)學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer網(wǎng)絡(luò)公開度




書目名稱Domain Adaptation and Representation Transfer網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer被引頻次




書目名稱Domain Adaptation and Representation Transfer被引頻次學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer年度引用




書目名稱Domain Adaptation and Representation Transfer年度引用學(xué)科排名




書目名稱Domain Adaptation and Representation Transfer讀者反饋




書目名稱Domain Adaptation and Representation Transfer讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:35:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:37:18 | 只看該作者
地板
發(fā)表于 2025-3-22 08:13:46 | 只看該作者
5#
發(fā)表于 2025-3-22 12:20:58 | 只看該作者
,Task-Agnostic Continual Hippocampus Segmentation for?Smooth Population Shifts,adual population shifts. We propose ODEx, a holistic solution that combines out-of-distribution detection with continual learning techniques. Validation on two scenarios of hippocampus segmentation shows that our proposed method reliably maintains performance on earlier tasks without losing plasticity.
6#
發(fā)表于 2025-3-22 15:13:03 | 只看該作者
Conference proceedings 2022orum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains..?.
7#
發(fā)表于 2025-3-22 17:48:15 | 只看該作者
0302-9743 scussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning (DL) approaches to clinical setting by making them robust and consistent across different domains..?.978-3-031-16851-2978-3-031-16852-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
8#
發(fā)表于 2025-3-23 00:54:11 | 只看該作者
9#
發(fā)表于 2025-3-23 04:49:45 | 只看該作者
Conference proceedings 2022tion with MICCAI 2022, in September 2022.?.DART 2022 accepted 13 papers from the 25 submissions received. The workshop aims at creating a discussion forum to compare, evaluate, and discuss methodological advancements and ideas that can improve the applicability of machine learning (ML)/deep learning
10#
發(fā)表于 2025-3-23 06:01:49 | 只看該作者
,Unsupervised Site Adaptation by?Intra-site Variability Alignment,and propose an . method that jointly aligns the intra-site data variability in the source and target sites while training the network on the labeled source site data. We applied our method to several medical MRI image segmentation tasks and show that it consistently outperforms state-of-the-art methods.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-6 08:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静海县| 乌苏市| 通道| 福建省| 乳山市| 米脂县| 清徐县| 奎屯市| 保山市| 视频| 遂川县| 泰顺县| 车致| 吕梁市| 德江县| 旅游| 定兴县| 确山县| 瓦房店市| 寻乌县| 阳原县| 西充县| 海林市| 会东县| 马鞍山市| 德格县| 社会| 临朐县| 彝良县| 南投市| 松溪县| 方正县| 江门市| 馆陶县| 会宁县| 望都县| 利辛县| 塔河县| 都安| 故城县| 丰都县|