找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning in Biometrics; David Zhang,Yong Xu,Wangmeng Zuo Book 2016 Springer Science+Business Media Singapore 2016 Biometric

[復制鏈接]
樓主: Iodine
41#
發(fā)表于 2025-3-28 15:23:22 | 只看該作者
42#
發(fā)表于 2025-3-28 19:03:51 | 只看該作者
https://doi.org/10.1007/978-981-16-6734-3ognition. Sparse representation also has a good performance in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. In this chapter, we will mainly introduce the application of the sparse representation in fields of face recogn
43#
發(fā)表于 2025-3-29 01:55:57 | 只看該作者
44#
發(fā)表于 2025-3-29 06:49:42 | 只看該作者
Karembe F. Ahimbisibwe,Tiina Kontinenes with several representative methods of discriminative learning for biometric recognition. The ideas, algorithms, experimental evaluation, and underlying rationales are also provided for the better understanding of these methods. In this chapter, we will give a further discussion about the book an
45#
發(fā)表于 2025-3-29 08:48:30 | 只看該作者
https://doi.org/10.1007/978-981-19-4859-6esent two novel metric learning methods based on a support vector machine (SVM). We then present a kernel classification framework for metric learning that can be implemented efficiently by using the standard SVM solvers. Some novel kernel metric learning methods, such as the double-SVM and the triplet-SVM, are also introduced in this chapter.
46#
發(fā)表于 2025-3-29 11:45:52 | 只看該作者
https://doi.org/10.1007/978-981-16-6734-3ognition. Sparse representation also has a good performance in both theoretical research and practical applications. Many different algorithms have been proposed for sparse representation. In this chapter, we will mainly introduce the application of the sparse representation in fields of face recognition.
47#
發(fā)表于 2025-3-29 18:09:41 | 只看該作者
David Zhang,Yong Xu,Wangmeng ZuoSummarizes the latest studies on discriminative learning methods and their applications to biometric recognition.Covers different biometric recognition technologies, including face recognition, palmpr
48#
發(fā)表于 2025-3-29 22:12:59 | 只看該作者
http://image.papertrans.cn/e/image/281228.jpg
49#
發(fā)表于 2025-3-30 03:01:48 | 只看該作者
10樓
50#
發(fā)表于 2025-3-30 05:20:34 | 只看該作者
10樓
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 21:15
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
来安县| 徐州市| 改则县| 蒙山县| 旌德县| 邮箱| 彝良县| 木里| 科技| 东辽县| 娱乐| 巍山| 陇川县| 万州区| 沈丘县| 永新县| 和平区| 五大连池市| 阳城县| 长丰县| 江都市| 和静县| 台山市| 南乐县| 利辛县| 玛曲县| 尉氏县| 西城区| 长岭县| 正安县| 呼和浩特市| 嘉兴市| 陕西省| 台前县| 南漳县| 桃源县| 镇赉县| 曲沃县| 临邑县| 麦盖提县| 望江县|