找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discriminative Learning in Biometrics; David Zhang,Yong Xu,Wangmeng Zuo Book 2016 Springer Science+Business Media Singapore 2016 Biometric

[復(fù)制鏈接]
樓主: Iodine
31#
發(fā)表于 2025-3-27 00:00:40 | 只看該作者
Metric Learning with Biometric Applicationsesent two novel metric learning methods based on a support vector machine (SVM). We then present a kernel classification framework for metric learning that can be implemented efficiently by using the standard SVM solvers. Some novel kernel metric learning methods, such as the double-SVM and the triplet-SVM, are also introduced in this chapter.
32#
發(fā)表于 2025-3-27 03:42:42 | 只看該作者
33#
發(fā)表于 2025-3-27 06:49:47 | 只看該作者
https://doi.org/10.1007/978-981-10-2056-8Biometrics; Discriminative learning; Palmprint authentication; Face recognition; Multi-biometrics; Patter
34#
發(fā)表于 2025-3-27 11:54:31 | 只看該作者
978-981-10-9515-3Springer Science+Business Media Singapore 2016
35#
發(fā)表于 2025-3-27 14:34:53 | 只看該作者
https://doi.org/10.1007/978-981-97-3629-4irst give an overview on the systems in terms of the input features and common applications. After that, we will provide a self-contained introduction to some discriminative learning tools that are commonly used in biometrics. A clear understanding of these techniques could be of essential importanc
36#
發(fā)表于 2025-3-27 18:48:39 | 只看該作者
https://doi.org/10.1007/978-981-19-4859-6esent two novel metric learning methods based on a support vector machine (SVM). We then present a kernel classification framework for metric learning that can be implemented efficiently by using the standard SVM solvers. Some novel kernel metric learning methods, such as the double-SVM and the trip
37#
發(fā)表于 2025-3-27 23:40:21 | 只看該作者
38#
發(fā)表于 2025-3-28 03:20:15 | 只看該作者
39#
發(fā)表于 2025-3-28 06:28:32 | 只看該作者
40#
發(fā)表于 2025-3-28 11:21:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂林市| 长海县| 安化县| 平和县| 洪江市| 乐陵市| 囊谦县| 琼中| 泰和县| 咸丰县| 乌兰察布市| 古浪县| 赤壁市| 广河县| 灌南县| 宽甸| 井冈山市| 翁牛特旗| 名山县| 沂源县| 荣昌县| 遵化市| 临邑县| 丹江口市| 西和县| 时尚| 大洼县| 祁阳县| 崇仁县| 滕州市| 克东县| 嘉善县| 惠来县| 黑水县| 平塘县| 孝昌县| 凤山市| 紫阳县| 高台县| 柳江县| 克什克腾旗|