找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2001 Springer-Verla

[復(fù)制鏈接]
樓主: 使委屈
61#
發(fā)表于 2025-4-1 03:29:38 | 只看該作者
62#
發(fā)表于 2025-4-1 08:58:21 | 只看該作者
63#
發(fā)表于 2025-4-1 11:16:17 | 只看該作者
J. Hobbhahn,K. Peter,A. E. Goetz,P. Conzen) ∩ conv (..) = ? for all 1 ≤ . < . ≤ ., where conv(..) denotes the convex hull of ..; and (.) each .. contains exactly .. red points and .. blue points for every 1 ≤ . ≤ ...We shall prove that the above partition exists in the case where (i) 2 ≤ . ≤ 8 and 1 ≤ .. ≤ ./2 for every 1 ≤ . ≤ ., and (ii) .. = .. = ... = .. = 2 and .. =1.
64#
發(fā)表于 2025-4-1 17:32:53 | 只看該作者
65#
發(fā)表于 2025-4-1 21:36:33 | 只看該作者
Universal Measuring Devices Without Gradationsally has gradations marked on its sides. In this paper we study measuring devices without gradations but which nevertheless can measure any integral amount, say liters, of liquid up to their full capacity. These devices will be called ... We determine the largest volume of measuring device with tria
66#
發(fā)表于 2025-4-2 00:18:24 | 只看該作者
A Note on the Purely Recursive Dissection for a Sequentially ,-Divisible Squareged to form two squares, three squares, and so on, up to . squares successively. A dissection is called . iff . more pieces needed to increase the maximum number . of composed squares by one. Ozawa found a general dissection of type-3, while Akiyama and Nakamura found a particular, “purely recursive
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通山县| 陵川县| 漯河市| 眉山市| 吉安县| 濮阳市| 湖北省| 兴海县| 徐闻县| 固阳县| 陆丰市| 黔西| 安丘市| 星座| 大悟县| 高雄市| 抚宁县| 武义县| 时尚| 广昌县| 万山特区| 永州市| 鹤庆县| 华坪县| 香港 | 汝南县| 延吉市| 广宁县| 凤冈县| 青田县| 沁阳市| 抚州市| 宣恩县| 芦溪县| 郧西县| 宁安市| 垦利县| 宝清县| 黑龙江省| 铁岭县| 佳木斯市|