找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano,Masatsugu Urabe Conference proceedings 2001 Springer-Verla

[復(fù)制鏈接]
樓主: 使委屈
31#
發(fā)表于 2025-3-26 22:51:01 | 只看該作者
Approximating Uniform Triangular Meshes for Spheres a relation of this problem to a certain extreme packing problem. Based on this relationship, we develop a heuristic producing 6-approximation for spheres (provided n is chosen sufficiently large). That is, the produced triangular mesh is . in this respect..The method is easy to implement and runs in .(..) time and . space.
32#
發(fā)表于 2025-3-27 02:37:09 | 只看該作者
33#
發(fā)表于 2025-3-27 06:41:33 | 只看該作者
34#
發(fā)表于 2025-3-27 11:21:58 | 只看該作者
35#
發(fā)表于 2025-3-27 16:51:03 | 只看該作者
36#
發(fā)表于 2025-3-27 19:57:13 | 只看該作者
37#
發(fā)表于 2025-3-27 23:50:02 | 只看該作者
Geometric Dissections that Swing and Twistns and stars. For twist hinges these include the conversion of swing hinges, the P-twist for parallelograms, and completing the pseudo-tesellation. Open problems relating to the possible universality of such hingings are posed.
38#
發(fā)表于 2025-3-28 04:45:09 | 只看該作者
Generalized Balanced Partitions of Two Sets of Points in the Plane) ∩ conv (..) = ? for all 1 ≤ . < . ≤ ., where conv(..) denotes the convex hull of ..; and (.) each .. contains exactly .. red points and .. blue points for every 1 ≤ . ≤ ...We shall prove that the above partition exists in the case where (i) 2 ≤ . ≤ 8 and 1 ≤ .. ≤ ./2 for every 1 ≤ . ≤ ., and (ii) .. = .. = ... = .. = 2 and .. =1.
39#
發(fā)表于 2025-3-28 07:37:00 | 只看該作者
Transabdominal Preperitoneal (TAPP) Repairposes two restrictions, one based on the reversal of the perimeter (surface area) and the interior (cross-section) of the polygon (polyhedron), and the other based on the hingeability of parts. In this paper, we survey main results on Dudeney dissections of polygons and polyhedrons.
40#
發(fā)表于 2025-3-28 13:57:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麻城市| 淮北市| 安新县| 湖州市| 衡阳县| 南昌市| 新田县| 沁源县| 岗巴县| 新蔡县| 龙海市| 金湖县| 娱乐| 铜梁县| 昔阳县| 尖扎县| 安宁市| 扎兰屯市| 额尔古纳市| 蒙自县| 交城县| 息烽县| 阳原县| 修武县| 鄯善县| 泰安市| 绵竹市| 两当县| 洞头县| 嵩明县| 双峰县| 滨州市| 苍梧县| 建水县| 玛多县| 聊城市| 兰溪市| 临江市| 潍坊市| 鄂尔多斯市| 江孜县|