找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry and Mathematical Morphology; Third International Sara Brunetti,Andrea Frosini,Simone Rinaldi Conference proceedings 2024

[復(fù)制鏈接]
樓主: whiplash
51#
發(fā)表于 2025-3-30 09:30:01 | 只看該作者
Chapter 7: Ajahn Chah Gives a Teachingd rotation using nine digitized beam shears, i.e., we round the result of each shear before applying the next one. As digitized shears are bijective, our 3D digitized rotation inherits the same property. Experiments show that the average error of our digitized rotation compared to the continuous one is kept under 1 (around 0.8).
52#
發(fā)表于 2025-3-30 13:57:35 | 只看該作者
53#
發(fā)表于 2025-3-30 18:24:18 | 只看該作者
Bijectivity Analysis of?Finite Rotations on?,: A?Hierarchical Approach hinge angles) and the size of the considered ball. We propose efficient algorithmic schemes leading to the construction of combinatorial models (trees) of the bijective finite rotations. These algorithms and structures open the way to a better understanding of the notion of bijectivity with respect to finite vs. infinite discrete rotations.
54#
發(fā)表于 2025-3-30 21:14:29 | 只看該作者
Bijective Digitized 3D Rotation Based on?Beam Shearsd rotation using nine digitized beam shears, i.e., we round the result of each shear before applying the next one. As digitized shears are bijective, our 3D digitized rotation inherits the same property. Experiments show that the average error of our digitized rotation compared to the continuous one is kept under 1 (around 0.8).
55#
發(fā)表于 2025-3-31 01:50:16 | 只看該作者
56#
發(fā)表于 2025-3-31 05:46:01 | 只看該作者
57#
發(fā)表于 2025-3-31 12:32:06 | 只看該作者
58#
發(fā)表于 2025-3-31 15:41:50 | 只看該作者
https://doi.org/10.1007/978-3-642-73875-3which guarantees the equality if the musical pattern satisfies a topological condition. This condition is met when the patterns do not intersect, or only slightly, which is coherent in a musical context. Due to the importance of repetition in music, this idea proves to be relevant for the musical pattern discovery task.
59#
發(fā)表于 2025-3-31 18:20:12 | 只看該作者
Plato killed a moth in my dream by the branch of the Stern-Brocot tree. This generalisation shows the close link between arithmetic hyperplanes and the generalised Stern-Brocot tree and opens up interesting perspectives for the recognition of pieces of arithmetic hyperplanes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 01:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乡市| 招远市| 临漳县| 通渭县| 久治县| 辽阳市| 黄骅市| 西乌| 历史| 齐齐哈尔市| 会东县| 聊城市| 高平市| 鄂尔多斯市| 中宁县| 丰都县| 烟台市| 冕宁县| 灵台县| 南阳市| 永年县| 高州市| 阜平县| 五华县| 玉树县| 大同县| 蓝田县| 阿拉善盟| 汉阴县| 南乐县| 高陵县| 固安县| 姜堰市| 伊宁市| 于都县| 朝阳区| 龙川县| 纳雍县| 新营市| 高唐县| 福建省|