找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Discrete Geometry and Mathematical Morphology; Third International Sara Brunetti,Andrea Frosini,Simone Rinaldi Conference proceedings 2024

[復(fù)制鏈接]
查看: 22526|回復(fù): 58
樓主
發(fā)表于 2025-3-21 17:49:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology
副標(biāo)題Third International
編輯Sara Brunetti,Andrea Frosini,Simone Rinaldi
視頻videohttp://file.papertrans.cn/282/281109/281109.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Discrete Geometry and Mathematical Morphology; Third International  Sara Brunetti,Andrea Frosini,Simone Rinaldi Conference proceedings 2024
描述.This book constitutes the refereed proceedings of the Third International Joint Conference?on Discrete Geometry and Mathematical Morphology, DGMM 2024, held in Florence, Italy during April 15–18, 2024...The 34 full papers included in this book were carefully reviewed and selected from 51 submissions.?They were organized in topical sections as follows: Digital Geometry - Models, Transforms, and Visualization;?Computational Aspects of Discrete Structures and Tilings;?Learning Based Morphology;?Hierarchical and Graph-Based Models, Analysis and Segmentation;?Discrete and Combinatorial Topology; and Mathematical Morphology and Digital Geometry for Applications..
出版日期Conference proceedings 2024
關(guān)鍵詞artificial intelligence; computer systems; computer vision; correlation analysis; geometry; graph theory;
版次1
doihttps://doi.org/10.1007/978-3-031-57793-2
isbn_softcover978-3-031-57792-5
isbn_ebook978-3-031-57793-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology影響因子(影響力)




書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology被引頻次




書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology被引頻次學(xué)科排名




書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology年度引用




書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology年度引用學(xué)科排名




書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology讀者反饋




書(shū)目名稱(chēng)Discrete Geometry and Mathematical Morphology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:11:58 | 只看該作者
Recognition of?Arithmetic Line Segments?and?Hyperplanes Using the?Stern-Brocot Treelly, naive arithmetic hyperplanes, and we present a new approach to recognise these discrete structures based on the Stern-Brocot tree. The algorithm for DSS recognition proposes an alternative method to the state of the art, keeping the linear complexity and incremental character. While most of the
板凳
發(fā)表于 2025-3-22 01:54:20 | 只看該作者
Bijective Digitized 3D Rotation Based on?Beam Shearsquence of three 2D shears along coordinate axes, leading to a decomposition of a 3D rotation into nine (beam) shears in total. We define a 3D digitized rotation using nine digitized beam shears, i.e., we round the result of each shear before applying the next one. As digitized shears are bijective,
地板
發(fā)表于 2025-3-22 06:47:40 | 只看該作者
5#
發(fā)表于 2025-3-22 09:30:00 | 只看該作者
Decomposition of?Rational Discrete Planes. Up to translation and symmetry, they are completely determined by a normal vector .. Excepted for a few well-identified cases, it is shown that there are two approximations . of ., satisfying ., such that the discrete plane of normal . can be partitioned into two sets having respectively the combi
6#
發(fā)表于 2025-3-22 14:24:59 | 只看該作者
Differential Maximum Euclidean Distance Transform Computation in?Component Treesong other applications, the maximum distance transform (DT) value can describe the thickness of the connected components of the image. In this paper, we propose using the maximum distance transform value as an attribute of component tree nodes. We present a novel algorithm to compute the maximum DT
7#
發(fā)表于 2025-3-22 17:05:11 | 只看該作者
8#
發(fā)表于 2025-3-22 23:15:15 | 只看該作者
Digital Calculus Frameworks and?Comparative Evaluation of?Their Laplace-Beltrami Operatorsnal problems onto them. However digital surfaces (boundary of voxels) cannot benefit directly from the classical mesh calculus frameworks, since their vertex and face geometry is too poor to capture the geometry of the underlying smooth Euclidean surface well enough. This paper proposes two new calc
9#
發(fā)表于 2025-3-23 04:08:31 | 只看該作者
10#
發(fā)表于 2025-3-23 09:28:47 | 只看該作者
A Khalimsky-Like Topology on?the?Triangular Gridsquare grid, causing the fact that the digital version of the Jordan curve theorem needs some special care. In a nutshell, the paradox can be interpreted by lines, e.g., two different color diagonals of a chessboard that go through each other without sharing a pixel. The triangular grid also has a s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 01:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永安市| 桐乡市| 龙江县| 区。| 三台县| 道孚县| 浦县| 汉源县| 玉门市| 浪卡子县| 陇川县| 长武县| 弥渡县| 连州市| 团风县| 仪陇县| 大石桥市| 道孚县| 论坛| 湖口县| 灵川县| 泾川县| 稷山县| 肥乡县| 连城县| 额敏县| 巴马| 叙永县| 钟祥市| 富民县| 本溪| 清远市| 临邑县| 沾化县| 江油市| 五指山市| 谢通门县| 松桃| 临城县| 页游| 壤塘县|