找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimensionality Reduction of Hyperspectral Imagery; Arati Paul,Nabendu Chaki Book 2024 The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
樓主: Croching
31#
發(fā)表于 2025-3-26 22:39:04 | 只看該作者
Performance Assessment and Dataset Description,ication is a supervised task, it requires ground truth information or the labelled samples to perform training. Hence, in this chapter, detailed descriptions of datasets and corresponding ground truth classes are provided. The same set of data is used for conducting all the experiments that are mentioned in subsequent chapters.
32#
發(fā)表于 2025-3-27 01:21:10 | 只看該作者
Ranking-Based Band Selection Using Correlation and Variance Measure,nsidered similar, and the one with higher variance is accepted as being more discriminating. Finally, the selected bands are classified, and overall accuracy (OA) is calculated. This method is compared with four other existing state-of-the-art methods in the similar field in terms of OA and execution time for evaluating the performance.
33#
發(fā)表于 2025-3-27 06:30:08 | 只看該作者
34#
發(fā)表于 2025-3-27 11:53:29 | 只看該作者
35#
發(fā)表于 2025-3-27 13:54:39 | 只看該作者
Performance Assessment and Dataset Description, analysis. Classification is one of the important tasks in remote sensing where hyperspectral images are used. Hence, to assess the performance of DR methods, spectrally reduced datasets are further classified, and the overall classification accuracies are measured. Other than overall accuracy, othe
36#
發(fā)表于 2025-3-27 19:44:33 | 只看該作者
Spectral Feature Extraction Using Pooling,e image. Hence, dimensionality reduction is applied as an essential pre-processing step in hyperspectral data analysis. Pooling is a technique of reducing spatial dimension and is successfully applied in intermediate layers of convolutional neural networks for spatial feature extraction. There are v
37#
發(fā)表于 2025-3-27 23:14:58 | 只看該作者
38#
發(fā)表于 2025-3-28 05:54:19 | 只看該作者
Dimensionality Reduction Using Band Optimisation, optimisation-based band selection approaches are discussed using genetic algorithms (GAs) and particle swam optimisation (PSO). In contrast to exhaustive search algorithms, optimisation-based approach employs fast search measures to find a better solution in a large solution space. The key strength
39#
發(fā)表于 2025-3-28 07:35:29 | 只看該作者
Data-Driven Approach for Hyperspectral Band Selection,agery (HSI) to improve classification accuracy. In most of the DR methods, the required number of selected/extracted bands is given by the user. However, in reality, it is difficult to perceive the required number of bands before the analysis starts. A particular number of (selected or extracted) fe
40#
發(fā)表于 2025-3-28 11:19:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 21:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潞城市| 大连市| 灵璧县| 广德县| 宜阳县| 宣恩县| 舞阳县| 龙陵县| 灵寿县| 界首市| 曲沃县| 合阳县| 罗平县| 乌拉特前旗| 四会市| 娄底市| 宾川县| 静安区| 内黄县| 呼图壁县| 志丹县| 婺源县| 宜章县| 定兴县| 青田县| 玉树县| 堆龙德庆县| 扎赉特旗| 嫩江县| 班玛县| 股票| 五河县| 诏安县| 丹棱县| 桂林市| 盈江县| 江都市| 嘉荫县| 揭东县| 自贡市| 扎兰屯市|