找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Dimensionality Reduction of Hyperspectral Imagery; Arati Paul,Nabendu Chaki Book 2024 The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
查看: 54701|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:55:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Dimensionality Reduction of Hyperspectral Imagery
編輯Arati Paul,Nabendu Chaki
視頻videohttp://file.papertrans.cn/281/280476/280476.mp4
概述Presents a data driven approach for dimensionality reduction (DR).Discusses the effect of spatial dimension and noise in the context of DR of hyperspectral imagery (HSI).Includes an optimization based
圖書封面Titlebook: Dimensionality Reduction of Hyperspectral Imagery;  Arati Paul,Nabendu Chaki Book 2024 The Editor(s) (if applicable) and The Author(s), und
描述This book provides information about different types of dimensionality reduction (DR) methods and their effectiveness in hyperspectral data processing. The authors first explain how hyperspectral imagery (HSI) plays an important role in remote sensing due to its high spectral resolution that enables better identification of different materials on?the earth’s?surface. The authors go on to describe potential challenges due to HSI being acquired in hundreds of narrow and contiguous bands, represented as a 3-dimensional image cube, often causing the bands to contain information redundancy. They then show how processing?a?large number of bands adds challenges in terms of computation complexity that reduces efficiency. The authors then present how DR is an essential step in hyperspectral data analysis to solve these issues. Overall, the book helps readers understand the DR processes and its?impact?in effective HSI analysis..
出版日期Book 2024
關(guān)鍵詞Dimensionality reduction; Hyperspectral image; Feature selection; Feature extraction; Band optimization;
版次1
doihttps://doi.org/10.1007/978-3-031-42667-4
isbn_softcover978-3-031-42669-8
isbn_ebook978-3-031-42667-4
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Dimensionality Reduction of Hyperspectral Imagery影響因子(影響力)




書目名稱Dimensionality Reduction of Hyperspectral Imagery影響因子(影響力)學(xué)科排名




書目名稱Dimensionality Reduction of Hyperspectral Imagery網(wǎng)絡(luò)公開度




書目名稱Dimensionality Reduction of Hyperspectral Imagery網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Dimensionality Reduction of Hyperspectral Imagery被引頻次




書目名稱Dimensionality Reduction of Hyperspectral Imagery被引頻次學(xué)科排名




書目名稱Dimensionality Reduction of Hyperspectral Imagery年度引用




書目名稱Dimensionality Reduction of Hyperspectral Imagery年度引用學(xué)科排名




書目名稱Dimensionality Reduction of Hyperspectral Imagery讀者反饋




書目名稱Dimensionality Reduction of Hyperspectral Imagery讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:37 | 只看該作者
Dimensionality Reduction: State of the Art,most discriminating characteristics, and therefore, the physical relevance of the selected bands is maintained. This chapter discusses the state-of-the-art methods of dimensionality reduction of HSI. Specific gap areas are also analysed, and accordingly, improved methodologies are given in subsequen
板凳
發(fā)表于 2025-3-22 04:18:49 | 只看該作者
地板
發(fā)表于 2025-3-22 08:22:23 | 只看該作者
5#
發(fā)表于 2025-3-22 09:39:05 | 只看該作者
Data-Driven Approach for Hyperspectral Band Selection,en band selection (BS) approach employs multi-featured analysis and signal-to-noise-ratio (SNR)-based band prioritisation for selecting discriminating bands. The signal quantisation process is used in the supervised data-driven approach for distinctly identifying each class signature pattern using a
6#
發(fā)表于 2025-3-22 14:25:32 | 只看該作者
Concluding Remarks and Way Forward,ion time. The effect of noise is also analysed for optimisation and ranking-based band selection (BS) methods. The data-driven approaches for band selection show significant advantage as they do not depend on user perception to select the required number of discriminating bands from the data. At the
7#
發(fā)表于 2025-3-22 18:28:56 | 只看該作者
8#
發(fā)表于 2025-3-22 22:28:57 | 只看該作者
9#
發(fā)表于 2025-3-23 01:37:40 | 只看該作者
Jochen Seemann,Jürgen Wolff von Gudenbergmost discriminating characteristics, and therefore, the physical relevance of the selected bands is maintained. This chapter discusses the state-of-the-art methods of dimensionality reduction of HSI. Specific gap areas are also analysed, and accordingly, improved methodologies are given in subsequen
10#
發(fā)表于 2025-3-23 06:47:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 23:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿拉善右旗| 宁陕县| 嘉荫县| 富川| 锡林浩特市| 正镶白旗| 永安市| 崇信县| 年辖:市辖区| 和田县| 婺源县| 疏勒县| 新乡县| 长泰县| 邵武市| 错那县| 巩留县| 乌拉特前旗| 广德县| 紫阳县| 荆门市| 冕宁县| 邯郸市| 郧西县| 安阳县| 涞源县| 芦山县| 金寨县| 江油市| 简阳市| 安塞县| 新田县| 清苑县| 徐水县| 赤峰市| 台南县| 兴山县| 长葛市| 兴和县| 安溪县| 玉林市|