找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and General Relativity; Volume 1 Canbin Liang,Bin Zhou Textbook 2023 Science Press 2023 Differential Manifold.Tensor

[復(fù)制鏈接]
樓主: VIRAL
21#
發(fā)表于 2025-3-25 05:01:52 | 只看該作者
22#
發(fā)表于 2025-3-25 08:37:19 | 只看該作者
Lie Derivatives, Killing Fields and Hypersurfaces,Suppose . and . are manifolds (whose dimensions can be different) and . is a smooth map. Let . and . represent the collection of all smooth tensor fields of type (.,?.) on . and ., respectively. . naturally induces a series of maps as follows.
23#
發(fā)表于 2025-3-25 13:46:23 | 只看該作者
Differential Forms and Their Integrals,We first introduce “forms” on an .-dimensional vector space ., and then discuss “differential forms” on an .-dimensional manifold ..
24#
發(fā)表于 2025-3-25 16:29:43 | 只看該作者
,Solving Einstein’s Equation,Solving Einstein’s Equation is an important problem in general relativity. Many exact solutions play important roles in the study and development of general relativity. Since Einstein’s equation is a highly nonlinear partial differential equation, finding an (exact) solution in the general case is rather difficult.
25#
發(fā)表于 2025-3-25 21:58:21 | 只看該作者
26#
發(fā)表于 2025-3-26 02:24:24 | 只看該作者
Special Relativity,nd time are treated separately in specific coordinate systems. However, after acquiring an understanding of differential geometry in the previous chapters, one can also use a 4-dimensional “global” way to formulate special relativity, which not only makes it easier to grasp the essence of the theory
27#
發(fā)表于 2025-3-26 07:16:01 | 只看該作者
28#
發(fā)表于 2025-3-26 12:26:24 | 只看該作者
Schwarzschild Spacetimes,sed mainly on finding the solution. In view of the essentialness of the Schwarzschild solution, this chapter will further discuss several intimately related problems: Sect.?. discusses the timelike and null geodesics in Schwarzschild spacetime; Sect.?. introduces three experimental tests of general
29#
發(fā)表于 2025-3-26 15:06:44 | 只看該作者
Cosmology I,out, and drawn conclusions concerning the universe. However, it is only after the development of general relativity that cosmology became a genuine science. From the point of view of general relativity, the universe?is the maximal spacetime containing everything in Nature, with its curvature on larg
30#
發(fā)表于 2025-3-26 19:20:33 | 只看該作者
1868-4513 rs at various levels.Uses pedagogic features including numer.This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten chapters, the first five of which introduce differential geometry, which is widely appli
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九台市| 镇康县| 怀来县| 昌吉市| 白银市| 曲周县| 兴隆县| 施甸县| 隆回县| 卢龙县| 荥经县| 南陵县| 子洲县| 鹰潭市| 固原市| 赣榆县| 扶风县| 屏南县| 嫩江县| 略阳县| 土默特左旗| 富源县| 华亭县| 田林县| 博湖县| 通道| 县级市| 焦作市| 海城市| 灵石县| 广安市| 阳泉市| 江孜县| 湖州市| 桂平市| 岳普湖县| 冷水江市| 抚宁县| 镇赉县| 来宾市| 射洪县|