找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Geometry and General Relativity; Volume 1 Canbin Liang,Bin Zhou Textbook 2023 Science Press 2023 Differential Manifold.Tensor

[復(fù)制鏈接]
查看: 38067|回復(fù): 48
樓主
發(fā)表于 2025-3-21 16:20:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Differential Geometry and General Relativity
副標(biāo)題Volume 1
編輯Canbin Liang,Bin Zhou
視頻videohttp://file.papertrans.cn/279/278752/278752.mp4
概述A textbook for graduate-level courses on general relativity.Includes both essential and optional reading sections to meet the needs of readers at various levels.Uses pedagogic features including numer
叢書(shū)名稱Graduate Texts in Physics
圖書(shū)封面Titlebook: Differential Geometry and General Relativity; Volume 1 Canbin Liang,Bin Zhou Textbook 2023 Science Press 2023 Differential Manifold.Tensor
描述.This book, the first in a three-volume set, explains general relativity using the mathematical tool of differential geometry. The book consists of ten chapters, the first five of which introduce differential geometry, which is widely applicable even outside the field of relativity. Chapter 6 analyzes special relativity using geometric language. In turn, the last four chapters introduce readers to the fundamentals of general relativity. Intended for beginners, this volume includes numerous exercises and worked-out example in each chapter to facilitate the learning experience. Chiefly written for graduate-level courses, the book’s content will also benefit upper-level undergraduate students, and can be used as a reference guide for practicing theoretical physicists..
出版日期Textbook 2023
關(guān)鍵詞Differential Manifold; Tensor Field; Riemann Curvature; Lie Derivative; Topological Spaces; Killing Vecto
版次1
doihttps://doi.org/10.1007/978-981-99-0022-0
isbn_softcover978-981-99-0024-4
isbn_ebook978-981-99-0022-0Series ISSN 1868-4513 Series E-ISSN 1868-4521
issn_series 1868-4513
copyrightScience Press 2023
The information of publication is updating

書(shū)目名稱Differential Geometry and General Relativity影響因子(影響力)




書(shū)目名稱Differential Geometry and General Relativity影響因子(影響力)學(xué)科排名




書(shū)目名稱Differential Geometry and General Relativity網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Differential Geometry and General Relativity網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Differential Geometry and General Relativity被引頻次




書(shū)目名稱Differential Geometry and General Relativity被引頻次學(xué)科排名




書(shū)目名稱Differential Geometry and General Relativity年度引用




書(shū)目名稱Differential Geometry and General Relativity年度引用學(xué)科排名




書(shū)目名稱Differential Geometry and General Relativity讀者反饋




書(shū)目名稱Differential Geometry and General Relativity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:55:39 | 只看該作者
Foundations of General Relativity,ivity came about is that Maxwell’s theory contradicts the notion of pre-relativity spacetime. Next, we will inspect Newton’s laws of motion. As an example, consider the law of conservation of momentum. As we pointed out at the beginning of Sect. ., if the definition of momentum . is still used, then
板凳
發(fā)表于 2025-3-22 00:24:45 | 只看該作者
地板
發(fā)表于 2025-3-22 05:13:49 | 只看該作者
Rate-Quality Optimized Video Coding. Physics studies the evolution of physical objects. For the convenience of study, people usually use physical models to describe physical objects. Models are the idealized version of objects, such as point masses, point charges, charged surfaces, etc. Now let us introduce a few fundamental concepts
5#
發(fā)表于 2025-3-22 09:21:26 | 只看該作者
6#
發(fā)表于 2025-3-22 16:12:47 | 只看該作者
Blood drawing via carotid catheter,magnetic fields in ., statistical physics and Hamiltonian theory often use phase spaces, special relativity has . as its spacetime background, etc. Colloquially, these spaces are all “continuous” rather than consisting of discrete points. The spacetime of general relativity is also a “continuous 4-d
7#
發(fā)表于 2025-3-22 18:47:14 | 只看該作者
Rate-Quality Optimized Video Codingnd time are treated separately in specific coordinate systems. However, after acquiring an understanding of differential geometry in the previous chapters, one can also use a 4-dimensional “global” way to formulate special relativity, which not only makes it easier to grasp the essence of the theory
8#
發(fā)表于 2025-3-22 23:49:55 | 只看該作者
Rate-Quality Optimized Video Codingo special relativity, this “l(fā)aw of laws” requires that the mathematical expressions for the laws of physics be Lorentz covariant. Therefore, when formulating physics in the framework of special relativity, all the known laws of physics should be inspected; those that satisfy this requirement remain
9#
發(fā)表于 2025-3-23 01:32:55 | 只看該作者
10#
發(fā)表于 2025-3-23 07:42:13 | 只看該作者
Das Herz, die Kreislaufzentraleout, and drawn conclusions concerning the universe. However, it is only after the development of general relativity that cosmology became a genuine science. From the point of view of general relativity, the universe?is the maximal spacetime containing everything in Nature, with its curvature on larg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-5 11:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀喇| 沂水县| 醴陵市| 哈尔滨市| 岳西县| 革吉县| 巴林右旗| 临汾市| 定襄县| 岑溪市| 敦煌市| 岳阳市| 休宁县| 松滋市| 凤冈县| 阿拉善左旗| 共和县| 多伦县| 甘南县| 巨野县| 宝鸡市| 和田市| 兴海县| 华阴市| 阜新| 宁化县| 太康县| 雷波县| 错那县| 大方县| 耿马| 石泉县| 兴仁县| 全州县| 南部县| 遂溪县| 津市市| 阳新县| 海伦市| 容城县| 乡城县|