找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Galois Theory and Non-Integrability of Hamiltonian Systems; Juan J. Morales Ruiz Book 1999 Springer Basel 1999 Dynamical Syst

[復制鏈接]
樓主: 你太謙虛
21#
發(fā)表于 2025-3-25 04:07:07 | 只看該作者
22#
發(fā)表于 2025-3-25 09:50:03 | 只看該作者
Book 1999d as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several i
23#
發(fā)表于 2025-3-25 13:07:17 | 只看該作者
Differential Galois Theory,ility” i.e., solutions in closed form: an equation is integrable if the general solution is obtained by a combination of algebraic functions (over the coefficient field), exponentiation of quadratures and quadratures. Furthermore, all information about the integrability of the equation is coded in t
24#
發(fā)表于 2025-3-25 16:02:04 | 只看該作者
25#
發(fā)表于 2025-3-25 22:30:06 | 只看該作者
Three Models,the Sitnikov system in celestial mechanics. We note that, from the differential Galois theory of Chapter 2 (we shall need only the theorem of Kimura and the algorithm of Kovacic) and from our results of Chapter 4, the methods proposed here are completely systematic and elementary. In our opinion, th
26#
發(fā)表于 2025-3-26 02:01:13 | 只看該作者
,An Application of the Lamé Equation,n and A and . are, in general, complex parameters. It is assumed, in what follows, that the roots of the polynomial . associated to . are simple (otherwise . is reduced to elementary functions). This is ensured if the discriminant.is non-zero, where g. and g. are the associated invariants (see Chapt
27#
發(fā)表于 2025-3-26 06:00:25 | 只看該作者
A Connection with Chaotic Dynamics,c differential Galois criterion of non-integrability based on the analysis in the . phase space of the variational equations along a particular integral curve. This problem was proposed in Section 6.4 (Question 2).
28#
發(fā)表于 2025-3-26 12:10:39 | 只看該作者
29#
發(fā)表于 2025-3-26 14:41:00 | 只看該作者
Maria Luisa De Rimini,Giovanni Borrelligrability is well defined for these systems, it is very important to clarify what kind of regularity is allowed for the first integrals: differentiability or analyticity in the real situation, analytic, meromorphic or algebraic (meromorphic and meromorphic at infinity) first integrals in the complex setting.
30#
發(fā)表于 2025-3-26 20:02:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 05:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
大新县| 边坝县| 襄垣县| 云浮市| 闽清县| 梓潼县| 治县。| 泰兴市| 鄂托克旗| 镇康县| 萝北县| 唐山市| 沽源县| 雅安市| 宣武区| 南江县| 恭城| 镇宁| 玉山县| 军事| 新干县| 崇礼县| 巴马| 永和县| 自贡市| 务川| 达日县| 兰溪市| 祁阳县| 天全县| 安顺市| 阳谷县| 淮滨县| 新邵县| 丰都县| 兴仁县| 眉山市| 湛江市| 水城县| 新乡县| 安溪县|