找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Galois Theory and Non-Integrability of Hamiltonian Systems; Juan J. Morales Ruiz Book 1999 Springer Basel 1999 Dynamical Syst

[復(fù)制鏈接]
查看: 17813|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:38:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems
編輯Juan J. Morales Ruiz
視頻videohttp://file.papertrans.cn/279/278722/278722.mp4
概述Award-winning monograph of the Ferran Sunyer i Balaguer Prize 1998.Well-balanced exposition addressing the relation between two different concepts of integrability.Proposes problems and conjectures wh
叢書名稱Progress in Mathematics
圖書封面Titlebook: Differential Galois Theory and Non-Integrability of Hamiltonian Systems;  Juan J. Morales Ruiz Book 1999 Springer Basel 1999 Dynamical Syst
描述.This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several i
出版日期Book 1999
關(guān)鍵詞Dynamical System; Galois group; Galois theory; algebra; differential algebra; differential equation; dynam
版次1
doihttps://doi.org/10.1007/978-3-0348-8718-2
isbn_softcover978-3-0348-0720-3
isbn_ebook978-3-0348-8718-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Basel 1999
The information of publication is updating

書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems影響因子(影響力)




書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems影響因子(影響力)學(xué)科排名




書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems網(wǎng)絡(luò)公開度




書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems被引頻次




書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems被引頻次學(xué)科排名




書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems年度引用




書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems年度引用學(xué)科排名




書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems讀者反饋




書目名稱Differential Galois Theory and Non-Integrability of Hamiltonian Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:52:22 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/d/image/278722.jpg
板凳
發(fā)表于 2025-3-22 02:07:22 | 只看該作者
Differential Galois Theory and Non-Integrability of Hamiltonian Systems978-3-0348-8718-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
地板
發(fā)表于 2025-3-22 04:43:32 | 只看該作者
Lipogenesis Pathway: Radiolabeled Choline,n and A and . are, in general, complex parameters. It is assumed, in what follows, that the roots of the polynomial . associated to . are simple (otherwise . is reduced to elementary functions). This is ensured if the discriminant.is non-zero, where g. and g. are the associated invariants (see Chapter 2).
5#
發(fā)表于 2025-3-22 12:15:46 | 只看該作者
6#
發(fā)表于 2025-3-22 15:34:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:34:39 | 只看該作者
Laura Evangelista,Alessandra ZorzAfter the long preliminary work of Chapters 2 and 3, we now give the central theoretical results of this book. They will be used in a systematic way in the rest of this book.
8#
發(fā)表于 2025-3-23 00:11:09 | 只看該作者
9#
發(fā)表于 2025-3-23 05:20:20 | 只看該作者
Introduction,During recent years the search for non-integrability criteria for Hamiltonian systems based upon the behaviour of solutions in the complex domain has acquired more and more relevance.
10#
發(fā)表于 2025-3-23 06:20:25 | 只看該作者
Non-integrability Theorems,After the long preliminary work of Chapters 2 and 3, we now give the central theoretical results of this book. They will be used in a systematic way in the rest of this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 13:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大石桥市| 黄冈市| 含山县| 二连浩特市| 胶州市| 汶上县| 上杭县| 松滋市| 中阳县| 乃东县| 衡东县| 晋中市| 茂名市| 盐池县| 定边县| 辽阳县| 盈江县| 秦皇岛市| 宜宾县| 涟水县| 安多县| 杨浦区| 屏边| 岳西县| 玉林市| 金昌市| 铜川市| 黎城县| 浙江省| 图片| 黄浦区| 田阳县| 林周县| 随州市| 青神县| 长顺县| 息烽县| 汨罗市| 鄱阳县| 原阳县| 商水县|