找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Periodic Maps; Reihe: Moderne Topol P. E. Conner,E. E. Floyd Book 19641st edition Springer-Verlag Berlin Heidelberg 1964 Map

[復制鏈接]
樓主: Encounter
21#
發(fā)表于 2025-3-25 06:45:00 | 只看該作者
22#
發(fā)表于 2025-3-25 09:41:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:36:52 | 只看該作者
Computation of the bordism groups, In section 14 we prove that the bordism spectral sequence is trivial modulo the class of odd torsion groups. In section 15 it is proved that if . has no odd torsion then Ω.(.) = ∑...,(.; Ωq); in section 18 it is shown that if . has no torsion then Ω* (.) ? .* (.) ? Ω as an Ω-module.
24#
發(fā)表于 2025-3-25 19:03:14 | 只看該作者
Differentiable involutions and bundles, class. In section 32, we make one application showing some of the influence of the homology of the total space on the Whitney classes of normal bundles to the fixed point set. In section 33, we give some generalizations of the famed Borsuk antipode theorems.
25#
發(fā)表于 2025-3-25 21:01:04 | 只看該作者
26#
發(fā)表于 2025-3-26 01:13:16 | 只看該作者
George Ives, Queer Lives and the Familyand completely computed by him. Moreover N = ∑ N. is a ring with multiplication induced by the cartesian product. . has shown that the structure of N is that of a polynomial algebra, over the base field .., with a generator in each dimension not of the form 2.— 1.
27#
發(fā)表于 2025-3-26 05:52:42 | 只看該作者
28#
發(fā)表于 2025-3-26 11:33:57 | 只看該作者
29#
發(fā)表于 2025-3-26 13:12:52 | 只看該作者
Quality Assurance in Higher Educationorollary of our results is that if .. has one of its Pontryagin numbers not divisible by . then the action has a stationary point. We go on to note that if a toral group acts on .. without stationary points then [..] represents a torsion element of Ω..
30#
發(fā)表于 2025-3-26 18:20:52 | 只看該作者
https://doi.org/10.1057/9781137316073 In section 14 we prove that the bordism spectral sequence is trivial modulo the class of odd torsion groups. In section 15 it is proved that if . has no odd torsion then Ω.(.) = ∑...,(.; Ωq); in section 18 it is shown that if . has no torsion then Ω* (.) ? .* (.) ? Ω as an Ω-module.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
敦煌市| 通道| 延寿县| 巴青县| 都兰县| 海南省| 安庆市| 灵武市| 南澳县| 东至县| 崇文区| 高台县| 界首市| 巴塘县| 宁海县| 临洮县| 富蕴县| 永泰县| 云南省| 青冈县| 饶平县| 道真| 灵璧县| 马关县| 菏泽市| 和硕县| 黄山市| 抚顺市| 凤凰县| 油尖旺区| 和龙市| 黔南| 湟中县| 玉田县| 建湖县| 新蔡县| 南充市| 临潭县| 壶关县| 农安县| 五大连池市|