找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Periodic Maps; Reihe: Moderne Topol P. E. Conner,E. E. Floyd Book 19641st edition Springer-Verlag Berlin Heidelberg 1964 Map

[復(fù)制鏈接]
樓主: Encounter
11#
發(fā)表于 2025-3-23 11:45:12 | 只看該作者
Differentiable Involutions,to be two cases to treat, . = 2, and . odd. In this chapter we treat the case . = 2; that is, we deal with differentiable involutions . on closed manifolds ... A distinctive feature of the case . = 2 is that we may ignore matters of orientation.
12#
發(fā)表于 2025-3-23 14:07:50 | 只看該作者
13#
發(fā)表于 2025-3-23 19:51:32 | 只看該作者
Where Are Quality Frontiers Moving to?We consider now the fixed point sets of differentiable maps .: .. → .. of odd prime period .. In section 38 we analyze the normal bundle ξ to the fixed point set. It turns out to be as simple as could be expected, breaking into a Whitney sum of complex vector bundles ξ. on which . acts as multiplication by ?., ? = exp(2π.).
14#
發(fā)表于 2025-3-23 22:36:12 | 只看該作者
15#
發(fā)表于 2025-3-24 05:38:54 | 只看該作者
Fixed points of maps of odd prime period,We consider now the fixed point sets of differentiable maps .: .. → .. of odd prime period .. In section 38 we analyze the normal bundle ξ to the fixed point set. It turns out to be as simple as could be expected, breaking into a Whitney sum of complex vector bundles ξ. on which . acts as multiplication by ?., ? = exp(2π.).
16#
發(fā)表于 2025-3-24 06:44:09 | 只看該作者
17#
發(fā)表于 2025-3-24 14:30:16 | 只看該作者
18#
發(fā)表于 2025-3-24 18:35:48 | 只看該作者
https://doi.org/10.1057/9781137316073to be two cases to treat, . = 2, and . odd. In this chapter we treat the case . = 2; that is, we deal with differentiable involutions . on closed manifolds ... A distinctive feature of the case . = 2 is that we may ignore matters of orientation.
19#
發(fā)表于 2025-3-24 23:02:15 | 只看該作者
20#
發(fā)表于 2025-3-24 23:41:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜山县| 泗水县| 汤阴县| 乐亭县| 钦州市| 上蔡县| 洞头县| 广东省| 两当县| 叙永县| 永春县| 腾冲县| 白朗县| 北安市| 邻水| 通辽市| 甘泉县| 鸡东县| 抚州市| 汝南县| 新龙县| 石柱| 诸暨市| 汶川县| 从江县| 丰镇市| 金溪县| 上犹县| 金川县| 犍为县| 淳化县| 西乌珠穆沁旗| 乐山市| 博兴县| 夹江县| 奉节县| 弥渡县| 崇文区| 锡林郭勒盟| 榆中县| 肥乡县|